Меню Рубрики

Установки для разделения продуктов воздуха

Получение продуктов разделения воздуха

Для получения основных продуктов разделения воздуха – азота и кислорода -используются воздухоразделительные установки, которые по принципу работы разделены на три основных типа:

  • криогенные — с разделением воздуха методом низкотемпературной ректификации;
  • адсорбционные — работающие при температуре окружающей среды и обеспечивающие разделение воздуха с помощью адсорбентов;
  • мембранные — работающие при температуре окружающей среды и обеспечивающие разделение воздуха с помощью полимерных мембран (молекулярных сит), выполненных в виде капиллярных трубок.

Критерием выбора типа установки является необходимый продукт, его состояние (сжиженное или газообразное), чистота, давление продуктового газа, производительность и экономичность.

Криогенные воздухоразделительные установки (ВРУ)

Принцип работы криогенных воздухоразделительных установок основан на низкотемпературной ректификации сжиженного воздуха. Установки состоят из компрессорного, технологического и вспомогательного оборудования. Упрощенная технологическая схема выглядит следующим образом: воздух после сжатия в компрессоре проходит блоки очистки, где освобождается от влаги, углекислоты и углеводородов, расширяется в детандере с понижением температуры, проходит через теплообменники, сжижается и попадает в ректификационную колонну на разделение, после чего, в зависимости от режима, выдается азот или кислород в жидком или газообразном состоянии.

Криогенные ВРУ технически достаточно сложны, требуют значительного времени для выхода на режим, смену режима и отогрев, включают в себя энергоемкую систему очистки, металлоемкое тепло- и массообменное оборудование, детандер, систему автоматики. Криогенные установки требуют высококвалифицированного обслуживания и достаточно энергоемки. Эти недостатки компенсируются возможностью получения сжиженных продуктов разделения воздуха и чистого медицинского кислорода.

НПО «ГЕЛИЙМАШ» выпускает малые криогенные установки по циклу высокого давления в двух базовых исполнениях: стационарную СКДС-100В и транспортабельную ТКДС-100В, размещенную в двух стандартных 20-футовых контейнерах. Станции предназначены для получения газообразного азота или кислорода под давлением, сжиженного азота или кислорода а также сухого воздуха высокого давления, свободного от примесей. По требованиям заказчиков возможно изготовление установок — модификаций базовых моделей.

Адсорбционные воздухоразделительные установки

Для потребителей газообразного азота и кислорода выпускаются адсорбционные воздухоразделительные установки. Их работа основана на селективном поглощении компонентов воздуха молекулярными адсорбентами по технологии Короткоцикловой безнагревной адсорбции (КБА) или в английском варианте Pressure Swing Adsorption (PSA).

При прохождении сжатого воздуха через один из двух попеременно работающих адсорберов происходит преимущественное поглощение азота или кислорода (одновременно с водяными парами, двуокисью углерода и углеводородными соединениями) из воздуха, а оставшийся газ направляется потребителю. Регенерация адсорбента осуществляется при сбросе давления в адсорбере и его продувке. Рабочий процесс на осуществляется при положительной температуре в полностью автоматическом режиме.

К числу факторов, обеспечивающих конкурентоспособность установок КБА (PSA), относится их сравнительная дешевизна, простота монтажа, эксплуатации и технического обслуживания. Кроме того, установки этого типа отличает компактность оборудования, высокая степень безопасности, надежности, автоматизации технологического процесса (включая пуск и остановку), короткий период пуска и практически неограниченная продолжительность рабочей кампании.

Адсорбционный метод разделения воздуха в достаточно большом диапазоне производительности и концентрации отличается большей экономичностью по сравнению с криогенным методом, что связано с меньшим давлением в цикле. Однако этот метод не позволяет получать чистый технический кислород и сжиженные газы.

Установки КБА для производства кислорода

Воздухоразделительные установки КБА (PSA) предназначенные для получения кислорода, обеспечивают относительно невысокую концентрацию продукта (не более 95%). Эта величина в определенной степени ограничивает применение установок. Не смотря на ограничения по концентрации кислорода, спектр применения установок достаточно широк:

  • для получения кислорода для автогенных работ (за исключением автоматической резки металлов);
  • в силикатной промышленности и целлюлозно-бумажном производстве;
  • в рыбоводстве;
  • для обработки сточных вод и обеспечения кислородом озонаторных установок;
  • в процессе переработки органических отходов (пиролиз);
  • в микробиологических производствах;
  • в пищевой и фармацевтической промышленностях, в сельском хозяйстве;
  • в других областях для интенсификации технологических процессов.

Установки КБА для производства азота

Серийные воздухоразделительные установки, работающие по принципу КБА (PSA) и предназначенные для производства газообразного азота, обеспечивают чистоту продукта до 99,9995%. Применение дополнительных модулей позволяет получить ещё более чистый азот.

Читайте также:  Установка gta 5 на другой диск

Установки применяются:

  • для обеспечения пожаро-взрывобезопасности во время проведения монтажных, профилактических и ремонтных работ на установках, блоках и элементах нефтегазового комплекса;
  • для создания «азотной подушки» при переливе и транспортировке нефтепродуктов;
  • для создания инертной среды в химических производствах при разделении сложных растворов и смесей, в том числе в лако-красочной промышленности;
  • для создания инертных сред в электронной промышленности;
  • в качестве средств пожаротушения и прекращения процессов тления в технологических процессах;
  • для упаковки пищевых продуктов;
  • в других областях для создания нейтральных сред.

Мембранные воздухоразделительные установки

Мембранные воздухоразделительные установки отличаются от остальных выдачей только одного целевого продукта – азота.
По составу оборудования мембранные установки аналогичны адсорбционным, только вместо адсорбционного блока разделения устанавливается блок со стандартными мембранными картриджами. Объем и чистота продуктового азота определяется производительностью компрессора, пропускной способностью мембранных картриджей и соотношением перерабатываемого и продуктового потоков.

Мембраны очень чувствительны к капельной влаге и маслу, поэтому установки эксплуатируются при температуре выше 0?С, а процессу подготовки воздуха уделяется особое внимание.

источник

Воздухоразделительные установки (ВРУ)

Воздухоразделительные установки (ВРУ) — установки для разделения воздуха на компоненты: кислород, азот, аргон, неон, ксенон, кр

Газовый состав воздуха на земле одинаков, за исключением углекислого газа, углеводородов и аммиака, концентрация которых на несколько (3 и более) порядков меньше, чем содержание кислорода и азота.

Воздухоразделительные установки (ВРУ) — установки для разделения воздуха на компоненты: кислород, азот, аргон, неон, ксенон
ВРУ состоит из 2-х секций: ожижительной и разделительной.
Ожижительная секция предназначена для получения жидкой флегмы, в которой массовая доля кислорода чуть выше, чем в воздухе, за счет более высокой температуры кипения, как следствие при испарении в парах над флегмой больше низкокипящих компонентов, таких как азот.
Ожижительная секция состоит из блока комплексной очистки и осушки (БКОО), компрессора, теплообменников, расширителя, в роли которого выступает дроссель или детандер, и оканчивается резервуаром для скопления сжиженной флегмы.
Обычно резервуаром для флегмы является дно ректификационной колонны.
Как правило, в системе стоит от 2-х и более теплообменников.
1-й теплообменник работает при положительных температурах, и предназначен для охлаждения сжатого компрессором воздуха, окружающим воздухом.
Последующие теплообменники охлаждают сжатый воздух путем теплообмена с исходящими продуктами: кислородом, азотом или флегмой.

Разделительная секция обычно состоит из ректификационной колонны, конденсатора-испарителя и ряда азото-кислородных теплообменников.
Количество ректификационных колонн зависит от конкретного газа или жидкости, который по техпроцессу получается в установке.
При получении, например, только газообразного азота в установке находится 1 колонна.
Воздух, проходит через несколько фильтров механической фильтрации, затем попадает в компрессор, где сжимается до давления цикла, затем поступает в БКОО, где с помощью адсорбентов из него удаляются влага, двуокись углерода и углеводороды, затем — в теплообменники.
Затем воздух попадает в нижнюю ректификационную колонну, где ректифицирует на кубовую жидкость (

35 % O2, 2 % Ar, остальное азот) и газообразный азот с чистотой

При получении кислорода в установке будут находиться верхняя и нижняя колонны и конденсатор — испаритель между ними.
Кубовая жидкость подается в середину верхней ректификационной колонны, а жидкий азот — в верх верхней ректификационной колонны.
Из верха верхней ректификационной колонны отбирается газообразный азот, внизу собирается жидкий кислород.
Жидкий кислород попадает в конденсатор-испаритель, который производит теплообмен с газообразным азотом нижней ректификационной колонны.

При получении аргона в установке будет находиться 4 колонны: нижняя, верхняя, сырого аргона, чистого аргона.

Остальные газы (ксенон, криптон, неон), находящиеся в воздухе получают в крупных ВРУ в виде смесей, из которых далее, в специальном оборудовании, эти газы выделяют в чистом виде.
Неон и гелий при работе ВРУ накапливаются в конденсаторе-испарителе в виде некондесируемой фракции.

Это может нарушать процессы конденсации азота, поэтому для удаления неона и гелия предусмотрен вентиль стравливания.

Читайте также:  Установка half life 2 без steam

ВРУ классифицируются:
в соответствии с методами разделения воздуха — на адсорбционные, мембранные и криогенные.

по давлению цикла разделения: P = 15 ÷ 20 МПа — высокое давление, P = 4 ÷ 7 МПа — среднее давление, P = 0,5 ÷ 1,2 МПа — низкое давление. по производительности:
малой Vк = 30 ÷ 300 (м³ N2 или O2)/час при нормальных условиях (T0 = 273 K, P0 = 760 мм рт.ст. = 101325 кПа);
средней Vк = 300 ÷ 3000 (м³ N2 или O2)/час при нормальных условиях;
высокой Vк > 3000 (м³ N2 или O2)/час при нормальных условиях;

по состоянию получаемого продукта:
для получения газообразных продуктов;
для получения жидких продуктов;
для одновременного получения продуктов в жидкой и газообразной фазах;

Расшифровка названия:
После тире в названии ВРУ указывается её производительность по первому продукту в тыс.м³/ч или тыс.кг/ч если речь идет о жидких продуктах.
А — получение газообразного азота
К — получение газообразного кислорода
Аж — получение жидкого азота
Кж — получение жидкого кислорода
Ар — получение газообразного аргона
Кт — получение технологического (чистота 95 %) кислорода

источник

Состав воздуха, продукты его разделения и их использование

Общие сведения

Состав воздуха, продукты его разделения и их использование

Состав атмосферного воздуха не постоянен. Содержание компонентов зависит от географической широты, высоты над поверхностью, солнечной активности и других факторов. Существенно неодинакова загрязненность воздушного бассейна, где содержание примесей может меняться в течение суток, например, под влиянием метеорологических условий.

Усредненный состав сухого атмосферного воздуха у поверхности земли приведен в табл. 1.1.

Таблица 1.1. Усредненный состав атмосферного воздуха

Газ Молекулярная масса Объемное содержание в воздухе, % Массовое содержание, % Нормальная температура кипения, К
Азот N2 28,016 78,09 75,52 77,36
Кислород O2 32,00 20,95 23,15 90,19
Аргон Ar 39,944 0,93 1,28 87,29
Диоксид углерода CO2 44.01 0,03 0,05 194,6
Неон Ne 20,183 1,8×10 -3 1,25×10 -3 27,0
Гелий He 4,003 5,24×10 -4 0,72×10 -4 4,22
Криптон Kr 83,8 1×14 -4 3,3×10 -4 119,0
Водород H2 2,016 5×10 -5 0,035×10 -4 20,4
Закись азота N2O 44,016 5×10 -5 8×10 -5 184,60
Ксенон Xe 131,3 8×10 -5 3,6×10 -5 165,0
Озон O3 48,00 1×10 -6 1,5×10 -6 161,25
Радон Rn 6×10 -18 4,5×10 -17 211,35

Кроме того, в зависимости от производственной деятельности в регионе, в воздухе содержится незначительное количество метана, ацетилена и других высокомолекулярных углеводородов.

Содержание в воздухе водяных паров зависит от температуры и относительной влажности j. Значение относительной влажности обычно усредняется для определенного региона. Для средней полосы России j=0,7-0,8.

В табл. 1.2. приведено насыщающее влагосодержание воздуха в зависимости от его температуры при нормальном атмосферном давлении.

При сжатии воздуха содержание влаги в нем при полном насыщении уменьшается.

Таблица 1.2. Насыщающее влагосодержание воздуха в зависимости от температуры при атмосферном давлении

Температура воздуха, °С Влагосодержание, г/кг Температура воздуха, °С Влагосодержание, г/кг Температура воздуха, °С Влагосодержание, г/кг Температура воздуха, °С Влагосодержание, г/кг
25,40 3,73 -30 0,229 -60 0,00695
19,07 -5 1,7 -35 0,133 -65 0,00286
14,17 -10 1,59 -40 0,077 -70 0,00163
10,35 -15 1,01 -45 0,043 -75 0,00073
7,48 -20 0,63 -50 0,024 -80 0,00032
5,313 -25 0,39 -55 0,013 -90 0,000082

Основными продуктами разделения предварительно осушенного воздуха в современных воздухоразделительных установках (ВРУ) являются следующие так называемые промышленные газы:

кислород технический – 99,2-99,7 % (1-й сорт – 99,7; 2-й сорт – 99,5; 3-й сорт – 99,2 %) и технологический – 92-98 % (в среднем – 95 %, остальное азот);

азот особой чистоты – не менее 99,996 %, высшего сорта – 99,994; 1-го сорта – 99,5; 2-го сорта – 99 и 3-го сорта – 97 %;

аргон высшего сорта – 99,993 и 1-го сорта – 99,987 %; сырой аргон – 86-90 %, содержащий до 4 % О2 и до 10 % N2; технический – 86-87 % с примесью 12-14 % азота;

Читайте также:  Установка зеркала на волгу сайбер

первичный криптоноксеноновый концентрат с объемной долей криптона и ксенона до 0,2 %;

неоногелиевая смесь с объемной долей неона и гелия от 40 % и выше.

В дальнейшем сырой аргон и криптоноксеноновый концентрат подвергаются очистке и дополнительной ректификации.

Применение основных продуктов разделения воздуха – кислорода и азота, является одним из важных направлений технического прогресса в ряде отраслей промышленного производства. Это черная и цветная металлургия, химическая, нефтехимическая и пищевая промышленность, энергетика, медицина, машиностроение и пр. Использование этих продуктов позволяет интенсифицировать технологические процессы в этих отраслях. Это способствует увеличению выработки продукции, улучшению ее качества, снижению себестоимости.

По данным США использование кислорода в различных отраслях промышленности распределяется приблизительно следующим образом (в % от общего производства кислорода):

черная и цветная металлургия 60;

химическая промышленность 25;

ракетная техника и энергетика 10;

В течение последних 25 лет ежегодный прирост производства кислорода составляет 12-15 %.

Примерные удельные расходы кислорода на единицу продукции составляют:

в доменном производстве – 100-150 м 3 на 1 т чугуна;

при конверторной выплавке стали – 55-60 м 3 /т кислорода 1-го и 2-го сорта;

в электроплавильном производстве – 15-20 м 3 /т, кислорода того же качества;

в производстве азотной кислоты – 155 м 3 /т, кислорода 1-3 сортов.

При аэрации и осветлении сточных вод воздухом, обогащенным кислородом, в зависимости от степени их загрязнения расходуется от 2 до 24 м 3 /м 3 .

С каждым годом все большее применение находит азот. В химической промышленности на производство аммиака, этилена, пропилена, азотных удобрений расходуется до 1000 м 3 азота на каждую тонну продукта.

Особое развитие нашла так называемая «азотная технология». Она стремительно расширяет области своего внедрения:

в машиностроении, например, это азотирование поверхностей деталей, что обеспечивает повышение прочности и износостойкости. Закалка инструмента в жидком азоте повышает его стойкость до 90 раз. Значительно надежнее и прочнее становятся неразъемные соединения, полученные с помощью жидкого азота, например, запрессовка бандажей, втулок и пр.;

в пищевой промышленности – азот наилучший охладитель и консервант продуктов питания;

в легкой промышленности – обработка кож, различного сырья. Замораживание жидким азотом тканей позволяет роботизировать и автоматизировать процессы раскроя и пошива одежды;

в медицине – безболезненные и быстрые операции на коже, глазах. Консервация органов пересадки, крови и др.

Жидкий азот является важнейшим хладоносителем для предварительного охлаждения газов в криогенных установках. С его помощью получают жидкий водород, гелий и др. редкие газы. На него возлагают большие надежды энергетики – разработчики высокотемпературной сверхпроводимости.

Аргон применяют как защитную среду для расплавленных металлов от окисления при плавке, разливе и электросварке нержавеющих сталей, титана, магния, алюминия. При плазменно-дуговой резке легированных сталей, сплавов алюминия, меди. При получении чистых металлов – титана, циркония, ниобия, молибдена и др.

Широко используется аргон в электроламповой промышленности для заполнения ламп накаливания и газоразрядных ламп. Лампы накаливания с аргоном имеют повышенные срок службы и светоотдачу. Аргон препятствует диффузии вольфрама, помутнению колб, уменьшают тепловые потери, так как позволяют повысить температуру нити накаливания.

В полупроводниковой промышленности аргон используется как защитная среда при производстве монокристаллов титана, бария, кремния и др. полупроводниковых материалов.

Сжижаются не только воздух и его компоненты. На практике широко применяются многие газы в сжиженном и твердом виде, например, CO2, CH4, H2, F2, и др. Некоторые из них применяются как хладагенты, другие как горючее и окислители. В ряде случаев сжижение ведется с целью перевоза и хранения.

Процессы сжижения газов довольно энергоемки. Например: для получения 1 т сухого льда (СО2) затрачивается 125-150 кВт×ч электроэнергии;

1 т жидкого кислорода (О2) – 1200-1500 кВт×ч;

1т жидкого водорода (Н2) – 60000-80000 кВт×ч.

Эксергетический КПД процессов сжижения, реализуемых в технических установках не превышает 20-25 %, а часто 10-15 %.

источник