Меню Рубрики

Установки для регенерации кислот

Регенерация травильных кислот в металлообработке

Нашей компанией разработана уникальная установка регенерации летучих травильных кислот и их смесей. Принцип действия данной установки основан на некипящей перегонке легколетучих кислот, таких как соляная, азотная, плавиковая. Установка целиком выполнена из полипропилена и полностью автоматизированна. При некипящей перегонке, отсутствует брызгоунос с паром, поэтому качество получаемой кислоты не ниже ХЧ.
Возможно так же, изготовление установок для повышения качества кислоты методом некипящей перегонки, тогда установки выполняються из чистого полипропилена без добавок, а качество получаемой кислоты соответствует ОСЧ.

Цены на установки очистки кислот вы можете посмотреть в нашем Прайс-листе.

Вообще, существует довольно значительное количество методов, применяемых при регенерации травильных кислот.

Краткий обзор методов регенерации травильных кислот и их смесей.

Травление — очень важная операция при нанесении поверхностных покрытий на металл различными способами: гальванопокрытие, горячее цинкование, нанесение конверсионных пленок (например, фосфатных) до последующей обработки (вытяжка / волочение и прессование), а также как окончательная или межоперационная обработка при прокатке листов, лент, проволоки, стержней и труб. В последнем случае речь идет главным образом об удалении окалины, т.е. устранении оксидов металлов, возникших на поверхности материала в ходе термической обработки. Кислоту для травления выбирают в зависимости от обрабатываемого материала.

Для углеродистой стали чаще предпочитают соляную, реже – серную кислоту. Травление нержавеющих сталей большей частью проводят в растворе из смеси азотной и фтористоводородной кислот. Для травления меди и медных сплавов до сих пор используют серную кислоту. Фосфорная кислота востребована преимущест венно не для травления, а скорее для фосфатирования или удаления ржавчины. В процессе травления удаляется окалина и продукты окисления поверхностных слоев материала при взаимодействии с водным раствором кислоты. При этом кислота растворяет не только окалину и продукты окисления, но и часть основного металла. Подавление указанного нежелательного эффекта достигается правильным выбором рабочих параметров травления – температуры и концентрации, а также применением при необходимости ингибиторов травления. Известно, что при травлении не удается использовать весь объем раствора в травильной ванне, в итоге в растворе помимо соли определенной кислоты (или солей кислот, если речь идет об их смеси) с металлом травленого материала остается существенное количество свободной кислоты (от четверти до трети первоначально введенного объема).

В случае слива отработанного раствора свободная кислота для последующего процесса травления не используется. Помимо этого при нейтрализации отработанного раствора известковым молоком (или же раствором гидроокиси натрия) окружающая среда загрязняется растворенными в воде кальциевыми или натриевыми солями (если речь идет о нейтрализации растворов с соляной или азотной кислотой).

Большинство используемых сегодня восстановительных процессов направлено главным образом на получение свободной кислоты из отработанных растворов и на ее возврат в процесс травления. Целью регенерации кислот и использованных травильных растворов, таким образом, является возврат в процесс травления максимально возможного количества первоначально введенной кислоты (кислот). Восстанавливать, вообще говоря, можно значительную часть неизрасходованной кислоты, которая составляет, как уже говорилось, от четверти до трети объема кислоты, первоначально введенной в основную ванну травления. Существует также возможность полной регенерации, однако на практике она находит применение только для ванн травления с соляной кислотой. Полная регенерация представляет собой разложение солей металлов с образованием кислоты и перевод металлов в соединения, приемлемые для последующей обработки, для нейтрализации или хранения на складе. При регенерации только свободной кислоты образуется раствор, который необходимо дополнить до требуемого рабочего объема и концентрации. Отработанный раствор в большинстве случаев затем нейтрализуют с получением осадков (шламов) нейтрализации, образованных гидроокисями металлов и нейтрализующих вод (в случае хлоридных или нитратных ванн травления – известковых солей). Полная термическая регенерация соляной кислоты. Идеальный восстановительный процесс должен был бы обеспечивать возврат всего (или как можно большего) количества первоначально введенной в процесс травления кислоты. Примером такого процесса может служить полная термическая регенерация соляной кислоты, при которой отработанную кислоту подвергают термическому разложению в реакторе с псевдоожиженым слоем, в потоке воздуха при температуре 550–800 °С. При этом происходит разложение раствора ванны травления на газообразный хлористый водород, воду и оксид железа. Газообразная фракция после конденсации вновь пригодна для использования в ванне травления. Степень регенерации может достичь свыше 95% первоначально введенной соляной кислоты.

Указанный процесс можно было бы считать практически безотходным, но только в том случае, если побочный продукт, т.е. оксид железа, снова использовать в процессе выплавки стали. В большинстве случаев этого, однако, не происходит. Собственно процесс регенерации является довольно энергоемким, его применение ограничивается определенным минимальным размером устройства травления (производительностью), а также содержанием некоторых других металлов в ванне травления (например, цинка). Это в значительной степени ограничивает или делает невозможным использование данного процесса в цехах горячего цинкования. Указанный способ регенерации используется как составная часть процесса травления в больших травильных цехах для ленты из углеродистых сталей.

Проводились эксперименты по использованию полной термической регенерации для смеси кислот в процессе травления нержавеющих сталей. Данный процесс, однако, осложняется рядом проблем, связанных с высокой коррозионной нагрузкой, которая определяется сочетанием высокой температуры и смесью паров азотной и фтористоводородной кислот. О прецедентах реализации подобного процесса данных нет. Не нашла применения и полная термическая регенерация ванн травления с серной кислотой.

Читайте также:  Установка вордпресс на vds

Регенерация серной кислоты. Широко распространенное в прошлом травление в растворах серной кислоты сегодня встречается относительно редко. Для замены указанного процесса разработан восстановительный метод, основанный на использовании значительного изменения растворимости железного купороса (FeSO4·7H2O) в растворе серной кислоты в зависимости от температуры. Указанный способ регенерации представляет собой пример частичной регенерации отработанного раствора в ванне травления, поскольку позволяет вернуть в процесс травления только свободную серную кислоту. В самом простом случае использованную ванну достаточно просто охладить с рабочей температуры (+70 °С) до +(2–5) °С, декантировать или сепарировать выделенный железный купорос и остающийся маточный раствор кислоты, содержащий практически всю свободную серную кислоту, которую после доведения до требуемого объема, рабочей концентрации и нагрева снова можно использовать в процессе травления. Небольшое количество сульфата железа, определяемое его растворимостью при низкой температуре, во вновь подготовленной ванне не оказывает влияния на процесс. Данный способ регенерации оптимизирован для непрерывных линий травления лент из углеродистых сталей.

Аналогичный способ регенерации можно использовать, например, при травлении меди в серной кислоте (за счет охлаждения использованной ванны происходит кристаллизация медного купороса – CuSO4·5H2O). Проблемы с регенерацией могут возникнуть при травлении сплавов меди.

Для регенерации травильных кислот также можно использовать ионообменные процессы.

Ионный обмен. При простом ионном обмене происходит замена ионов металлов, содержащихся в солях в ваннах травления, ионами H+ ионообменной смолы. После истощения емкости ионита его необходимо регенерировать. Вытесненные из солей металлы необходимо нейтрализовать. Указанный метод можно использовать в случае дорогостоящей травильной и дешевой восстановительной кислот. В данном случае можно говорить практически о полной регенерации первоначально введенной кислоты, поскольку соли металлов после замены ионов металла ионом H+ переводятся обратно в свободную кислоту. Собственно процесс регенерации необходимо чередовать с восстановительными циклами ионита для возможности повторного его использования.

Процесс замедления. Замедление, используемое для регенерации травильных кислот, основывается на различной скорости прохождения ионов металлов и ионов водорода через специальный ионообменный слой. При этом снижается содержание солей металлов в травильной ванне.

Кислота затем вытесняется преимущественно в противоточном режиме при промывании водой, а после дополнения концентрированной кислотой до технологического уровня ванна становится вновь пригодной для травления.

В этом случае в ходе регенерации необходимо чередовать удаление металлов и вытеснение кислоты. Указанную регенерацию широко применяют в случае травления нержавеющих сталей в смеси азотной и фтористоводородной кислот в таком режиме, когда в ванне травления поддерживают постоянные рабочие (концентрационные) условия. Данный процесс также обеспечивает реутилизацию только свободной кислоты. Раствор солей необходимо нейтрализовать.

Диффузионный диализ – это еще один из мембранных процессов. Его принцип заключается в протекании отработанного раствора травления через ионообменную мембрану, с другой стороны которой находится проточная вода. При таком расположении элементов происходит разделение свободных кислот и солей металлов. В результате получаются, с одной стороны, растворы солей металлов

с небольшим количеством свободных кислот, а с другой – раствор, содержащий только остаточные свободные кислоты, которые после доведения до технической концентрации – можно снова использовать в процессе травления.

Данная технология является полностью непрерывной и используется, например в травильных процессах нержавеющих сталей с использованием смеси кислот.

Последние два варианта регенерации возвращают в технологический процесс травления только свободную, неизрасходованную кислоту, которая в противном случае была бы нейтрализована. Оба способа дают высокую степень регенерации (свыше 90%).

Заслуживает внимания и возможность получения свободных кислот для возврата в процесс травления с использованием вакуумного испарения и конденсации паров. Сгущенный раствор солей потом можно нейтрализовать.

Данный метод применим только для летучих кислот. Как отмечалось выше, использование растворов кислот для ванн травления и уровень их регенерации оказывают воздействие на окружающую среду. Традиционно используемые нейтрализующие средства (водные растворы гашеной извести, гидроокиси натрия) образуют с отработанными кислотами практически нерастворимые в воде гидроокиси металлов (Fe, Cr, Ni и др.), которые нейтрализуются, а образующийся осадок удаляется. Пока что таким образом осаждают только сульфаты, фториды и фосфаты.

Самыми распространенными травильными кислотами являются соляная и азотная, при этом все хлориды, а также нитраты, содержащиеся в травильных растворах кислот или их солях после нейтрализации переходят в форму растворимых. По этой причине довольно большое значение имеют процессы частичной регенерации, поскольку снижают уровень засоления. Однако процессы имеют существенные недостатки, прежде всего высокую энергоемкость.

В настоящее время не существует универсальной технологии регенерации. В каждом конкретном случае необходимо выбирать технологию с учетом целого ряда факторов, влияющих на ее пригодность. При этом желательно учитывать и необходимость снижения неблагоприятного воздействия на окружающую среду.

источник

Регенерация отработанной серной кислоты

Серная кислота — важнейший продукт химической промышленности по объему производства и по раз­нообразию областей применения.

Серная кислота — важнейший продукт химической промышленности по объему производства и по раз­нообразию областей применения.

Крупными потребителями серной кислоты являются химическая и нефтехимическая про­мышленность, металлургия, машиностроение, сельское хозяйство и другие отрасли промышленности.

Читайте также:  Установка звукового сигнала мазда 3

Ежегодно порядка 10% от общего ее производства становится отработанной серной кислотой.

Необходимо утилизировать сотни тысяч т отработан­ной кислоты с целью экономного ресурсопользования и защиты окружающей среды.

Отходы, образующиеся при использовании серной кислоты, включают кроме отработанной серной кислоты травильные растворы, кислые гудроны и сточные воды, содержащие кислоту менее 10 % (по массе).

В России насчитывается более 200 видов отработанной серной кислоты, содержащих около ста видов примесей, в том числе аккумуляторная кислота из отработанных свинцовых аккумуляторов.

Обезвреживание и утилизацию отработанной серной кислоты производят следующими способами:

— нейтрализацией растворов или их огневым обезвреживанием без использования образующихся продуктов;

-использованием (возможно после предварительного упари­вания) загрязненных растворов в других технологических про­цессах;

— регенерацией отходов с получением товарной серной кислоты.

Сточные воды с низкой концентрацией серной кислоты обычно нейтрализуют щелочами.

При содержании в сточных водах примесей нейтрализацию совмещают с огневым методом. Метод нейтрализации применяют при небольших количествах отходов и отсутствии в них органических примесей.

Непосредственное использование отходов кислоты в других процессах ограничено из-за наличия в них примесей.

Отрабо­танную кислоту применяют после очистки и концентрирования в производстве сульфатных минеральных удобрений.

Основная масса отработанной серной кислоты и кислых гудронов подвергается регенерации.

Кислые гудроны — это вы­соковязкие смолообразные жидкости, содержащие серную кислоту и большое количество органических веществ. Содержание кислоты в них составляет 24-89 %.

В зависимости от состава отработанной кислоты применяют различные методы регенерации: термическое расщепление, экстрагирование органических примесей, адсорбцию, каталити­ческое окисление пероксидом водорода, коагулирование, вы­паривание и тд.

Для концентрирования серной кислоты применяются 2 типа установок:

— с непосредственным соприкосновением греющих газов с кислотой.

Установки внешнего обогрева — котлы, так называемые реторты, установки типа Бюшинга, Паулинга, Фришера, Майснера.

В них происходит обогрев кислоты через стенку в аппаратах колонного типа, установки вакуум- аппаратов и установки Дюпон пленочного типа.

Установки с непосредственным соприкосновением горячих газов с кислотой — установки Кесслера, аппараты типа Хемико, работающие в режиме барботирования газов через слой серной кислоты, аппараты Вентури трубного типа.

Суть процесса концентрирования в таких аппаратах заключается в дроблении кислоты на капли благодаря потоку горячего газа.

Оба вида технологий получения концентрированной серной кислоты имеют как положительные, так и отрицательные стороны.

Большим преимуществом установок с внешним обогревом является отсутствие или минимальное количество тумана серной кислоты, образующейся в результате работы концентраторов второго типа, а также получения серной кислоты с крепостью до 98%.

Из-за исключения необходимости очистки выхлопных газов от кислотного тумана дорогостоящих электрофильтрами, можно удешевить техпроцесс .

Но при концентрировании серной кислоты, например, в ретортах до 96% крепости и выше, происходит их быстрое изнашивание из-за высокой температуры кипения серной кислоты, которая достигает 300°С.

При высоких температурах увеличивается испарение и разложение серной кислоты, что ведет к потере количества и качества серной кислоты.

Эти недостатки устранены в установках Майснера, где концентрирование происходит под вакуумом.

Установки Майснера более компактны по сравнению с ретортными установками Паулинга.

Установки с колоннами Майснера занимают менее 40% площади, требующейся для установки реторт Паулинга.

Недостаток установки Майснера:

— малая производительность (выход составляет до 13-15 т/сут).

— растрескивание ферросилидовых царг, проявляющееся в процессе эксплуатации данной установки, а также нарушение уплотнения между царгами.

— необходимость строительства котельных для выработки водяного пара, применяемого в колоннах.

Установки Майснера могутт быть применены только в случаях необходимости концентрирования небольших количеств серной кислоты и для получения при этом серной кислоты высокой концентрации (до 98%).

Установки Дюпон решают проблема растрескивания ферросилидовых материалов и проблему появления неплотностей, путем применения нагревательных труб и метода стекающей пленки.

В установках Дюпон применено новое техническое решение в виде монтажа оборудования с учетом механических и термических напряжений ферросилида, на катках или на пружинных подвесках.

Преимущества: простота устройства, исполнения и обслуживания. Установки по производительности относятся к числу средних, достигая до 25 т/сутки.

Недостатки установок Дюпон:

— загрязнение внутренних поверхностей труб с течением времени, что приводит к снижению их теплопропускной способности,

— необходимость их периодической прочистки и промывки труб с применением большого количества воды.

В России сначала популярными были установки Дюпон, в связи ростом потребности в серной кислоте, более популярными стали установками 2 го типа — с непосредственным соприкосновением греющих газов с кислотой.

Преимущества установок Кесслера:

— значительно облегчена передача тепла от топочных газов к серной кислоте,

— концентрируемая кислота не доводится до точки кипения, а большая, открытая поверхность контакта газа и кислоты максимизирует интенсивность процесса массопередачи и теплопередачи,

— возможность работать на любом местном виде топлива: газообразном, жидком, твердом, что значительно увеличивает сырьевые возможности безостановочного перехода с одного вида топлива в случае необходимости на другой.

Недостатки установок Кесслера:

— необходимость периодической чистки рекуператора с выгрузкой насадки,

— большая потеря СК с отходными газами, что составляет порядка 2-2,5%.

Эти установки имеют — 20 т/сутки.

Более перспективны концентраторы барабанного типа.

Читайте также:  Установка карнизных планок капельников

— концентрирование производится путем барботажа горячих газов через упариваемую кислоту, как в слое кислоты, так и в зоне брызг, где на поверхности капель происходит хорошая теплопередача.

-лучшее использование тепла и переработка большого количества кислоты.

До настоящего времени они считались наиболее удобными, экономичными и практичными для концентрирования серной кислоты.

Работают на мазуте и газе.

— необходимость в поддержании строгого температурного режима топочных газов, так как увеличение его даже на 10 °С довольно быстро разрушает барботажные трубы 1 й камеры концентратора и увеличивают потери кислоты из-за ее термического разложения, которые составляют 10-15% от общего количества.

— образование паров и туманов СК, улов которых требует применение громоздких и дорогостоящих сооружений — электрофильтров, причем сами электрофильтры тоже имеют недостатки — они осуществляют неполный улов сернистых газов и окислов азота, которые выбрасываются в атмосферу; стоимость же их весьма велика и составляет до 30% затрат на всю установку.

Скоростные концентраторы, в которых потоком горячего газа жидкость преимущественно разбивается на мельчайшие капли. Для создания такого процесса концентрирования серной кислоты в капельном состоянии используют аппараты Вентури.

В России наибольшее распространение получила регенерация серной кислоты огневым методом, при котором происходит высокотемпературное расщепление кислоты.

Метод универсален и высокоэффективен.

При огневом методе используется концентрированная серная кислота, поэтому при необходимости предварительно проводят упаривание отрабо­танной кислоты до необходимой концентрации.

Процесс термического расщепления кислоты и окисление органических. примесей проводят при 950-1200 °С, для чего в огневом реакторе сжигают топливо (рис 1).

Рис. 1. Схема установки для регенерации серной кислоты методом термического расщепления (В — воздух; Т- топливо)

Сернокислотные растворы с помощью форсунок распыляют в потоке продуктов сгорания топлива в огневом реакторе 1.

Туда же с помощью воздуходувки 2 подается воздух, предварительно пропущенный через воздухоподогреватель 4.

Органические примеси при этом окисляются с образованием С02 и Н20, а серная кислота расщепляется с образованием SО2

Сернистый газ из огневого реактора поступает в котел-утилизатор 5, а из него — в систему очистки 6, где очищается от пыли, сернокислотного тумана и подвергается осушке, после чего с помощью газодувки 7 подается в узел получения кислоты 8.

Насыщенный пар из котла — утилизатора 5 подается на пароперегреватель 3, а оттуда — потребителям.

Очищенные дымовые газы с помощью дымососа 9 выбрасываются в атмосферу через дымовую трубу 10.

Огневая регенерация серной кислоты из отходов позволяет одновременно с их обезвреживанием получать товарную про­дукцию высокого качества.

Это приводит к сокращению расходов природного сырья и снижению затрат на производство серной кислоты на 25-30 % по сравнению с ее производством из первичного сырья (элементарной серы).

Для рентабельной регенерации серной кислоты из рас­сматриваемых отходов необходимо их предварительное обез­воживание (концентрирование).

В связи с отсутствием в отходах летучих веществ концентрирование можно осуществить методом упаривания в контактных теплообменниках за счет теплоты отходящего из огневого реактора сернистого газа.

При этом одновременно происходит закалка газа.

Содержание воды в упаренном растворе зависит от тем­пературы отходящих из огневого реактора газов и от содержания воды в исходном растворе.

Если в исходном растворе имеется 60-70 % воды, то после упаривания его отходящими газами с температурой 950-1000 °С содержание воды снижается до 35- 40 %.

При огневой переработке таких растворов концентрация S02 в сухом сернистом газе — не менее 7 %.

Сильно разбавленные растворы, содержащие более 80 % воды, после упаривания содержат ее не более 60 %. При огневой переработке таких растворов с целью получения сернистого газа с содержанием 802 не менее 6 % в качестве топлива используют серу или сероводород, а также обогащают кислородом дутьевой воздух.

Для более полного превращения S03 в S02 в огневом реакторе целесообразно 2-ступенчатое сжигание топлива.

В 1й ступени термическое расщепление серной кислоты и сульфатов осуществляется в восстановительной газовой среде (в продуктах неполного горения топлива), а во 2й ступени происходит дожигание продуктов неполного горения за счет подачи вторичного воздуха.

При огневой утилизации отработанных травильных растворов и гидролизной серной кислоты получают побочный продукт — порошкообразный оксид железа.

Если травильные растворы не загрязнены различными примесями, получаемый оксид железа применяется в производстве красителей, активных катодных масс, ферритных порошков, полирующих паст и т д.

Загрязненный оксид железа используется как металлургическое сырье.

В процессе регенерации травильных сернокислотных растворов образуется сульфат железа, который можно использовать непосредственно без дополнительной обработки как ядохимикат, а также для мелиорации почв и очистки сточных вод. Этот продукт может использоваться после соответствующей переработки как сырье для получения серы и оксида железа.

Существуют методы переработки сульфата железа в сернистый газ (а следовательно, в серную кислоту).

Разработа­на технология получения серной кислоты путем одновремен­ного сжигания сульфата железа и серы в реакторе с кипящим слоем.

Процесс проводят при температуре 900-1000 °С. Обра­зующиеся в процессе сжигания пульпы, состоящей из сульфата железа и серы, продукты сгорания (сернистый газ и вода) подвергаются очистке от пыли, охлаждаются до 290-300 °С и направляются на получение серной кислоты по классической схеме.

источник