Меню Рубрики

Установки для ремонта скважин нефти газа

Классификация и состав машин, оборудования, сооружений и инструмента для добычи нефти и газа

Введение к лекции 1

Номенклатура оборудования, входящего в комплексы, составляет сотни наименований, а высокие темпы развития нефтегазодобывающей промышленности приводят к его быстрому обновлению, созданию совершенно новых типов, размеров и конструкций. Изучение этого многообразия технических средств делает необходимым их систематизацию, основу которой составляет классификация.

Наиболее целесообразно классифицировать исходя из технологического признака, а не по параметрам или конструктивному исполнению.

Классификация и состав машин, оборудования, сооружений и инструмента для добычи нефти и газа

Все машины, оборудование, механизмы, сооружения, средства механизации и инструмент всех назначений можно классифицировать, разделяя их на восемь главных групп, каждая из которых состоит из нескольких подгрупп, к которым и относятся конкретные технические средства данной группы.

I группа. Оборудование эксплуатационной скважины обеспечивает нормальное функционирование важнейшего из промысловых сооружений – эксплуатационной скважины, являющейся каналом, связывающим продуктивный пласт с дневной поверхностью. Надежность и эффективность оборудования этой группы полностью предопределяют надежность работы скважины. Оборудование этой группы включает:

1. Обсадные колонны труб, образующие ствол скважины и обеспечивающие его надежность.

2. Колонные головки, которые соединяют на устье скважины обсадные колонны в один узел, одновременно служат пьедесталом для спущенных в скважину средств ее эксплуатации.

3. Фильтры, которыми оснащают скважину в зоне продуктивного пласта для фильтрации пластовой жидкости или газа.

4. Клапаны-отсекатели пласта устанавливаются над фильтром для предупреждения открытого фонтанирования скважины. Клапанами-отсекателями пласта оснащаются фонтанирующие скважины.

5. Пакеры устанавливаются в скважине для ее разделения на участки и их герметизации.

6. Прискважинные сооружения, представляющие собой площадку в зоне устья скважины для ее обслуживания и ремонта.

II группа. Оборудование для эксплуатации скважин предназначено для подъема из скважины пластовой жидкости или газа. Часть оборудования спускается в скважину и является в этом случае «подъемником» (лифтом), а часть монтируется в зоне устья. В других случаях оборудование применяется для нагнетания в пласт жидкости или газа и оборудование называется нагнетательным. Группа состоит из следующих подгрупп.

1. Оборудование для фонтанных скважин. Это оборудование предназначено для эксплуатации только фонтанирующих нефтяных, газовых или газоконденсатных скважин. Оборудование состоит из подъемника (лифта), фонтанной арматуры и манифольда, позволяющих поднимать по скважине на поверхность продукцию, обеспечивать контроль и регулирование фонтанирования и поддерживать оптимальный режим работы скважины.

2. Газлифтное оборудование предназначается для эксплуатации скважины путем подачи сжатого газа к низу подъемника. К этому оборудованию относятся газлифтный подъемник с комплектом пусковых и рабочих клапанов, газлифтная арматура с КИП и манифольдом, компрессорные станции с мотокомпрессорами, холодильниками, оборудованием для подготовки газа и сложная сеть коммуникаций – трубопроводов для подачи газа к скважине со средствами автоматизации и регулирования. Газокомпрессорные станции с мотокомпрессорами используются для компримирования и нагнетания в скважину газа, энергия которого и обеспечивает подъем пластовой жидкости из скважины на поверхность.

3. Запорные устройства – один из наиболее часто применяемых видов оборудования для перекрытия и герметизации трубопроводов: нефте-, газо- и водопроводов. Запорные устройства применяются и в фонтанной арматуре для управления потоками жидкости или газа, а также при газлифтной и других видах эксплуатации скважин.

4. Насосно-компрессорные трубы (НКТ) широко применяются в нефтегазодобывающей промышленности при фонтанной, газлифтной и насосной эксплуатациях.

5. Штанговые скважинные насосные установки с механическим приводом нашли массовое применение на промыслах. Оборудование предназначено для подъема жидкости с помощью штангового насоса. К подгруппе относятся собственно скважинный насос, спущенный на НКТ и приводимый в действие колонной штанг, насосные штанги и поверхностный привод, включающий энергетическую установку и механический преобразователь вращательного движения вала привода установки в поступательное колонны штанг.

6. Штанговые установки с гидроприводом отличаются использованием гидравлического преобразователя вместо механического, что резко сокращает металлоемкость установки, ее массу и устраняет необходимость сооружения мощного фундамента под установку.

7. Бесштанговые установки центробежных скважинных электронасосов предназначены для эксплуатации высокодебитных скважин. В состав входят спускаемые в скважину погружной центробежный насос с электродвигателем и протектором, колонна насосных труб с токонесущим кабелем и поверхностная система управления электроприводом.

8. Бесштанговые электровинтовые скважинные насосы предназначены для эксплуатации скважин с небольшими дебитами и отличаются от предыдущих использованием вместо центробежного винтового насоса.

9. Бесштанговые гидропоршневые скважинные насосы используются для эксплуатации глубоких и наклонно направленных скважин. В состав установок входят спускаемый в скважину на колонне насосных труб гидроприводный скважинный насос, поверхностный силовой насос с приводом, нагнетающий рабочую жидкость в гидропривод скважинного насоса, и система подготовки рабочей жидкости.

10. Оборудование для эксплуатации одной скважиной нескольких разных по характеристикам пластов, которое размещается в одном стволе и включает комплекс разнотипного оборудования (например, фонтанного и насосного), в результате чего становится возможным при разработке многопластовых месторождений нефти и газа значительно сократить число эксплуатационных скважин. В состав оборудования этой подгруппы входят спускаемые в скважину пакеры, разделяющие ствол скважины на изолированные, связанные с разными пластами участки, и подъемники, позволяющие поднимать тем или иным способом жидкость или газ по колоннам труб на поверхность, где на устье скважины размещено устьевое оборудование, направляющее отдельно добытые нефть или газ с различными характеристиками в систему сбора.

III группа.Оборудование для подземного ремонта, освоения и обработки скважин предназначено для поддержания в течение всего периода эксплуатации скважины работоспособного состояния собственно скважины и спущенного в нее эксплуатационного оборудования. В группу входят:

1. Подъемники для спуско-подъемных операций внутрискважинной части фонтанных и газлифтных лифтов, скважинных насосов всех типов, колонн труб, штанг, кабеля. В состав подъемников входят привод, лебедка, транспортная база, полиспастная система, которые используются в основном для текущего ремонта.

2. Стационарные грузоподъемные сооружения работают в сочетании с подъемниками. К этой подгруппе относятся вышки, мачты, стеллажи разных типов и параметров, они используются в основном для текущего ремонта.

3. Спуско-подъемные агрегаты, к которым относятся агрегатированные на транспортной базе силовой привод, трансмиссия, лебедка, полиспастная система, вышка, стеллажи и средства механизации для спуска и подъема труб, штанг.

4. Подгруппы спуско-подъемных инструментов для спуско-подъемных операций с трубами или штангами при подземных ремонтах с помощью подъемников и комплекса специальных устройств – трубных элеваторов и штропов, ключей, спайдеров.

5. Оборудование для ремонта скважин под давлением. Ремонт скважин с высоконапорными пластами обычным способом связан с вероятностью открытого фонтанирования. Для его предупреждения, а также для спуска и подъема в скважину колонн труб или штанг под давлением применяется комплекс оборудования, включающий специальный подъемник для задавливания спускаемых труб и щтанг и устройства, герметизирующие устье скважины. Подъемник оснащен гидрофицированными средствами механизации спуско-подъемных операций, в большинстве случаев агрегатированных.

6. Оборудование для ликвидации открытых фонтанов. Для ликвидации открытого фонтанирования, а иногда и горящего фонтана используется оборудование для ремонта скважин под давлением в сочетании со специальными манипуляторами и противопожарной дистанционно управляемой техникой.

7. Оборудование для промывки скважин. Во время эксплуатации скважины в ее ствол попадают частицы песка и глин и осаждаются в виде пробки. Ствол и фильтр скважины загрязняются также смолами, парафином, продуктами коррозии и другими веществами, ухудшающими, а иногда полностью прекращающими приток пластовой жидкости или газа в скважину. Песчаные пробки удаляются промывкой с помощью передвижных промывочных агрегатов или тартанием. К этой группе оборудования относятся также промывочные агрегаты, позволяющие удалять из скважины загрязняющие ее смолы, парафин, и продукты коррозии.

8. Депарафинизационное оборудование, позволяющее удалять осаждающийся на подъемном оборудовании парафин во время эксплуатации или во время подземных ремонтов скважин. В первом случае применяются механические способы, во втором – термические.

9. Оборудование для капитального ремонта скважин – одно из наиболее сложных, поскольку к нему относятся целые установки, по схеме и функциональному назначению аналогичные буровым установкам. Они позволяют выполнять бурение, цементаж, исправление скважин, их освоение, а для этого включают в себя вышку, основания, талевую систему, лебедку, систему промывки, ротор, вертлюг, ведущую трубу, привод и трансмиссию, транспортную базу.

Читайте также:  Установка 116 дмрв вместо 037

10. Инструмент для капитального ремонта скважин предназначен для ликвидации аварии внутри скважин, исправления ствола и извлечения из него отдельных деталей, для фрезерования и других работ внутри скважины при ее капитальном ремонте, а иногда и при текущем.

11. Подгруппа оборудования для внутрискважинных работ. Оснащенность скважин и подъемного оборудования, спущенного в скважину, клапанами-отсекателями пласта, пакерами, газлифтными клапанами делает необходимым периодическую их замену, управление ими, регулирование. Периодически возникает необходимость измерения внутрискважинных параметров (температур, давлений и т. д.). Все эти внутрискважинные работы выполняются с помощью специализированных агрегатов, приспособлений и инструмента составляющих самостоятельный комплекс.

IV группа. Оборудование и сооружения для интенсификации добычи нефти и газа и для увеличения нефтегазоотдачи пластов. Широкое применение этого оборудования позволяет сократить время разработки месторождений и количество оставшихся неизвлеченными нефти и газа. В группу входит следующее.

1. Оборудование и сооружения для подготовки воды. Большая часть нефтегазовых месторождений разрабатывается при одновременном нагнетании в пласт предварительно специально обработанной воды. Сооружения и оборудования по получению воды и ее подготовке и составляют эту подгруппу, включая водозабор, систему отстоя, коагулирования, химической и бактериологической обработки.

2. Подгруппы оборудования насосных станций и собственно насосы для нагнетания воды в пласт, к которым относятся здания насосных, обвязка насосов и энергетическое хозяйство, собственно нагнетательные насосы с приводом, обычно электрическим, системы дозировочных насосов для добавления к воде различных химических реагентов.

3. Подгруппы оборудования для нагнетания в пласт газа, к которым относятся компрессорные станции, основой которых являются компрессоры разных типов и характеристик (поршневые, турбинные с электрогазомоторным или газотурбинным приводом), энергетическое хозяйство, системы подготовки газа, контроля и регулирования.

4. Оборудование и коммуникационные сооружения, к которым относятся сети трубопроводов и распределительных устройств для подачи воды от насосных станций и газа от компрессорных к нагнетательным скважинам, а также система управления распределением воды и газа по скважинам.

5. Оборудование для гидроразрыва или кислотной обработки, для улучшения проницаемости пласта и его призабойной зоны. Первое состоит из комплекса агрегатов, связанных в период проведения операций по гидроразрыву общей обвязкой. В числе агрегатов используются насосные, обычно высокого давления, песковые, смесительные, автоцистерны и др. Оборудование для кислотной обработки представляет собой комплекс из цистерн с раствором кислоты, насосных агрегатов и обвязки, объединяющей их со скважиной в одну систему и позволяющей нагнетать раствор кислоты в пласт для увеличения проницаемости, а соответственно и притока жидкости и газа к скважине.

6. Оборудование для термического воздействия на пласт применяется с целью прогрева пласта и снижения за счет этого вязкости пластовой жидкости или для создания внутрипластового очага горения жидкости с образованием фракций, извлечение которых позволяет резко увеличить нефтеотдачу. К подгруппе относятся водоподогреватели, парогенераторы, оборудование для подогрева зоны фильтра скважины, нагнетатели разных типов.

V группа. Оборудование и сооружения для сбора продукции скважин, ее разделения – сепарации на нефть, газ, воду и примеси, измерения и первичной подготовки нефти, газа, газового конденсата. Оборудование этой группы расположено на поверхности, в основном на территории промысла. В группу входит следующее оборудование.

1. Оборудование и сооружения для разделения пластовой газированной жидкости на нефть, газ и воду. К ним относятся комплексы, состоящие из отстойников, сепараторов с обвязкой и средствами регулирования, перекачивания и запорной арматуры для первичного разделения продукции скважины.

2. Подгруппы оборудования и сооружений для подготовки товарной нефти, к которым относятся установки для обезвоживания нефти после предварительного отделения от нее основной доли воды, установки обессоливания, деэмульгаторы. Последние предназначены для разбивания стойких эмульсий. Эти группы также состоят из аппаратов, систем подогрева, электрооборудования, обвязки, запорной, регулировочной арматуры и контрольно-измерительной аппаратуры.

3. Перекачивающее оборудование состоит из промысловых, насосных и компрессорных перекачивающих установок и станции для перекачки продукции скважин, подготовленной нефти, газа, воды с центробежными или поршневыми, иногда винтовыми насосами, компрессорами и электроприводом с соответствующей обвязкой, КИП, запорной и регулирующей арматурой и средствами автоматизации.

4. Оборудование для хранения нефти. Подготовленная товарная нефть хранится в товарных парках, основными сооружениями в которых являются резервуары необходимой емкости, оснащенные системой замера, перекачки, улавливания легких фракций. Иногда парк имеет емкости для хранения газового конденсата и различных фракций газа.

5. Трубопроводные коммуникации, связывающие в единую систему скважины, насосные и компрессорные установки с остальным оборудованием группы. По трубопроводам перекачивается продукция скважины: нефть, газ, конденсат, вода. Сеть трубопроводных коммуникаций, особенно на промыслах, разрабатывающих многопластовые горизонты с нефтями и газом различных характеристик, оснащена большим числом замерных, запорных и регулирующих устройств.

6. Подгруппы оборудования для подготовки и первичной переработки газа на газоконденсатных и чисто газовых месторождениях. К этим подгруппам относится большое число установок с оборудованием и аппаратами для технологических процессов, в результате которых получаются углеводороды, являющиеся товарным сырьем для химической переработки, и сухой газ.

VI группа. Оборудование для эксплуатации морских нефтегазовых и газовых промыслов отличается особой сложностью, большой номенклатурой, часто уникальными размерами и высокими темпами совершенствования. Ниже перечислены подгруппы:

1. Кустовые стационарные платформы. К ним относятся платформы разных типов и конструктивных схем, служащих основанием для поверхностных устьев куста наклонно направленных скважин и размещения комплекса технических средств, обеспечивающих функционирование куста.

2. Центральные стационарные платформы, позволяющие разместить на них комплекс оборудования, связывающего кустовые платформы в единую систему.

3. Опоры стационарных платформ – сооружения, несущие стационарную платформу.

4. Блоки оборудования, размещаемые на стационарных платформах. Комплекс смонтированных в необходимом сочетании блоков модулей обеспечивает функционирование всей стационарной платформы.

5. Оборудование для эксплуатации скважин функционально аналогично обычному. Однако широкое применение имеют лишь фонтанное и газлифтное оборудование, реже гидропоршневые насосы. Для нагнетательных скважин используется оборудование, аналогичное применяемому на суше. Внутрискважинная часть подъемного оборудования по конструктивным схемам аналогична применяемым на суше, устьевая отличается.

6. Подводное оборудование. К этой подгруппе относятся прежде всего подводное устьевое оборудование скважин, а также все остальное оборудование, размещенное между поверхностями дна и воды.

7. Оборудование для беспричального налива нефти. Оборудование этой группы относится к нефтеналивному, однако отличается от обычного портового возможностью налива танкера в условиях морских акваторий без обычного причала.

8. Подгруппы береговых сооружений и оборудования, энергетического оборудования, флота специализированного обслуживания, водолазного комплекса по своей структуре, функциональным и принципиальным схемам аналогичны применяемым в других отраслях, однако отличаются конструктивным исполнением, характеристиками, параметрами, отражающими специфику морских промыслов и требований, предъявляемых технологическими процессами и операциями, выполняемыми в условиях морского или океанского шельфа.

VII группа. Оборудование ремонтно-механической службы для поддержания в работоспособном состоянии всего парка машин, специального оборудования, сооружений, составляющих промысловое хозяйство, за исключением скважин, а также оборудования транспортных служб.

VIII группа. Оборудование службы энергетики.

Из приведенного перечня систематизированных групп и подгрупп оборудования видно, насколько велика номенклатура машин, оборудования, сооружений, средств механизации и инструмента, применяемых для добычи нефти и газа.

Две последние группы – седьмая и восьмая – относятся по своему составу к оборудованию общепромышленного назначения, поэтому не рассмотрены.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Дотянуться до глубин

Хотя сама идея бурения кажется простой и понятной, в реальности этот процесс сопряжен с большим количеством трудностей. Современная скважина — сложнейший объект, строительство которого требует применения высоких технологий

От быка до турбобура

Бурить скважины люди начали давно. Известно, что в эпоху династии Хань (202 до н. э. — 220 н. э.) китайцы уже умели строить скважины, достигавшие 600 м в глубину. Судя по сохранившимся изображениям, при этом использовался ударно-вращательный метод бурения: быки поворачивали долото, а группа людей синхронными прыжками загоняла его глубже в землю. Первая информация о бурении скважин в России относится к IX веку и связана с добычей растворов поваренной соли в районе Старой Руссы.

Официально принято считать, что первую скважину глубиной около 500 м, предназначенную для коммерческой добычи нефти, построил в 1859 году в штате Пенсильвания Эдвин Дрейк. Однако известно, что как минимум за 10 лет до этого нефтяные скважины успешно строили в Баку, и это не единственный пример, позволяющий оспаривать пальму первенства США.

Читайте также:  Установка браузера в moservices

В середине XIX века при бурении скважин для добычи соляных растворов, а потом и нефти применялось в основном ударное бурение. При этом разрушение (дробление) породы происходит под действием ударов падающего снаряда либо ударов по самому неподвижному снаряду. С увеличением глубины бурения эта технология становится все менее эффективной — сложнее промывать скважину, жидкость создает дополнительное сопротивление падающему долоту, а при бурении без промывки много времени уходит на очистку и крепление скважины. Поэтому на смену ударному пришло вращательное бурение.

Внедрение технологии механического роторного бурения в начале ХХ века стало одним из ключевых событий развития нефтяной промышленности. Впервые новую технологию применили на нефтяных промыслах Техаса в 1901 году. При роторном бурении долото, дробящее породу, присоединялось к колонне бурильных труб, вся эта конструкция опускалась в скважину и вращалась специальным станком с поверхности.

К окончанию первой трети XX века роторное бурение полностью завоевало нефтяную отрасль. Изменения в конструкции оборудования и технологии привели к более чем десятикратному увеличению скорости проходки и снижению себестоимости буровых работ, при этом глубину скважин удалось увеличить до Впрочем, и этот способ не был лишен недостатков. Среди них — громоздкость бурового инструмента: при глубине скважины в 4 км колонна бурильных труб весила более 200 тонн, и основная часть энергии тратилась именно на вращение колонны, а не на углубление самой скважины. Решить проблему позволило размещение двигателя, вращающего долото, в глубине скважины.

Устройство нефтяной скважины

Каждая колонна обсадных труб, спускаемая в скважину, имеет свое назначение и название. Первая, самая короткая, — направление. Она предназначена для предохранения устья скважины от размыва и для направления промывочной жидкости в желобную систему в процессе бурения скважины. Следующая колонна — кондуктор — изолирует водоносные пласты, перекрывает верхние неустойчивые породы. На нее монтируется противовыбросовое оборудование. Низ кондуктора, как и низ всех спускаемых после него колонн, заканчивается короткой утолщенной трубой, называемой башмаком.

Технические колонны опускают в скважину в особо сложных случаях — они служат для перекрытия пластов при определенных геологических условиях бурения (зоны высокого поглощения, пласты, склонные к набуханию от воды, осыпанию и т.п.). Эксплуатационная колонна спускается в скважину для извлечения нефти, газа или нагнетания в продуктивный горизонт воды или газа с целью поддержания пластового давления. Она предназначена для крепления стенок скважины, разобщения продуктивных горизонтов и изоляции их от других пластов. Эта колонна спускается до продуктивного пласта.

Фильтр — участок скважины, непосредственно соприкасающийся с продуктивным нефтяным или газовым горизонтом. Через фильтр в скважину поступает жидкость. Фильтром может служить не обсаженный колонной участок ствола скважины, специальное устройство с отверстиями, заполненное гравием и песком, часть эксплуатационной колонны или хвостовика с отверстиями или щелями. На устье скважины монтируется фонтанная арматура — устройство, которое запирает скважину. Его функция — регулировать и контролировать работу скважины, предохранять от аварийных фонтанных выбросов флюида.

Прогресс двигателей

Первым такой агрегат — турбобур — создал в 1922 году советский ученый Матвей Капелюшников. Современный турбобур — это многоступенчатый гидравлический двигатель. В каждой ступени турбины (а их количество может достигать 350) имеются два диска с профильтрованными лопатками. Один из них (статор) неподвижно закреплен в корпусе турбобура, а другой (ротор) вращается. Буровой раствор, нагнетаемый в скважину для промывки забоя, вращает роторы, усилие с которых передается на долото. Позднее появились и другие виды погружных двигателей, например, электрический и винтовой. В настоящее время на бурение с применением забойных двигателей приходится более 90% работ. При этом само бурение происходит с чередованием направленного (без вращения всей колонные) и роторного режима (с вращением колонны). Именно этот способ бурения позволил строить не только вертикальные скважины.

Существенный недостаток традиционного роторного бурения — невозможность передавать на долото усилие, которое бы искривляло траекторию проходки в нужном направлении. Появление забойного двигателя решило эту проблему. Чтобы искривить ствол скважины, применяются специальные отклонители долота, при этом само долото вращается погружным двигателем. Когда угол наклона скважины изменен, прямой участок можно пройти роторным способом.

Возможность бурить скважины с разным углом наклона, в том числе и горизонтальные, стала толчком к появлению идеи строительства многоствольных скважин. То есть скважин, у которых от основного ствола отходят дополнительные под разными углами. Мало того, ответвления могут отходить и от боковых стволов. Часто боковые стволы зарезаются на уже существующих скважинах, чтобы увеличить охват разрабатываемых продуктивных пластов. В целом же строительство многоствольной скважины на залежи позволяет добраться до разобщенных зон коллектора, содержащих нефть, обеспечить более эффективное управление разработкой месторождения и избежать преждевременного обводнения, сэкономить на капзатратах на бурение. В «Газпром нефти» технологию многоствольного бурения начали осваивать в 2011 году. В 2012 году было пробурено пять таких скважин, а уже два года спустя этот показатель увеличился в шесть раз.

Роторные управляемые системы

Бурение скважин со сложной траекторией ствола требует особого подхода. Сегодня эти задачи решаются благодаря применению новых технологий, таких как роторные управляемые системы (РУС). Как и при любом роторном бурении, в случае использования РУС вращается вся бурильная колонна. Возвращение к идее роторного бурения было обусловлено тем фактом, что при проходке скважины с помощью погружного двигателя бурильная колонна не всегда вращается, буровой раствор застаивается в скважине, очистка скважины ухудшается, и в результате учащается количество прихватов оборудования. При бурении сложных горизонтальных скважин такое положение вещей может стать критическим.

Роторные управляемые системы решают проблемы традиционного роторного турбинного бурения. Чтобы уменьшить затраты энергии на трение колонны бурильных труб, применяют специальные растворы с высокими смазочными характеристиками. Изменен и принцип искривления скважины. При обычном роторном бурении отклонение бурильного инструмента от вертикали возможно только после прекращения вращения колонны и запуска погружного двигателя. При использовании РУС отклоняющее усилие на долото создается прямо в процессе вращения колонны, а управление отклоняющим блоком происходит с поверхности. В итоге технология позволяет свести к минимуму риск возникновения прихвата инструмента в скважине, повысить скорость проходки и качество ствола, улучшить очистку ствола от шлама, уменьшить его извилистость, снизить скручивающие и осевые нагрузки.

Сегодня РУС успешно применяются в «Газпром нефти». Первые испытания импортных систем прошли в «Газпромнефть-Ноябрьскнефтегазе» еще в 2012 году. Тогда технология успешно зарекомендовала себя, хотя в качестве существенного недостатка специалисты отмечали отсутствие отечественных аналогов и, соответственно, дороговизну западного оборудования. В этом году в Ноябрьске при содействии специалистов «Газпромнефть НТЦ» впервые испытали роторную управляемую систему российского производства.

Буровая механика

Буровая вышка — один из главных символов нефтяной промышленности. Однако сама по себе вышка — лишь несложная конструкция, позволяющая удерживать бурильную колонну, а также поднимать и опускать в скважину бурильные и обсадные трубы. Для этого на вышке монтируются разнообразные приспособления: буровая лебедка, автомат спуска-подъема труб, талевая система, ротор и др.

Бурильная колонна — это собранный из бурильных труб ступенчатый полый вал, на конце которого находится породоразрушающий инструмент — долото. Первая труба колонны соединена с вертлюгом, подвешенным в верхней части буровой вышки, на нее передается вращение от электрического привода буровой установки. Бурильная колонна своим весом создает нагрузку на долото, которое вгрызается в породу. При роторном бурении колонна (а вместе с ней и долото) вращается с частотой об./мин. При бурении с погружным двигателем энергия потока бурового раствора заставляет вращаться долото, и в зависимости от конструкции забойного двигателя скорость вращения может варьироваться от 40 до 1200 об./мин. У турбобуров скорость вращения — об./мин. Во всех случаях поток жидкости выносит на поверхность обломки породы (шлам).

Читайте также:  Установка tls на сервер

Бурильные трубы, как правило, имеют длину 12,5 м и диаметр Между собой они соединяются бурильными замками. Две-три свинченные вместе трубы образуют свечу. По мере углубления скважины свечи навинчивают друг за другом. Для борьбы с неконтролируемым искривлением скважины применяют утяжеленные бурильные трубы.

Кроме того, комплекс бурового оборудования включает силовой блок из нескольких двигателей, которые приводят в действие ротор и подъемную лебедку, насосный блок для промывки ствола скважины, а также циркуляционную систему, состоящую из нескольких емкостей для хранения бурового раствора, блока приготовления и регулирования его свойств, перемешивателей, блока очистки.

Сила раствора

На каждые 1000 м ствола скважины приходится тонн измельченной породы, которые необходимо извлекать на поверхность. Когда-то ее просто вычерпывали при помощи специальных приспособлений, что занимало довольно много времени.

Идею очищать ствол скважины от осколков разрушенной породы потоком жидкости предложил французский инженер Фловиль в 1833 году. С тех пор технология остается в своей основе неизменной: в процессе бурения насос постоянно закачивает в скважину специальный, чаще всего глинистый раствор. Он не только вымывает породу — с помощью раствора охлаждается инструмент, укрепляются стенки скважины, вращается вал гидравлического двигателя, а также создается давление на пласт, не давая пластовой жидкости вырваться раньше времени наружу.

Состав бурового раствора подбирается индивидуально для каждого месторождения и скважины исходя из условий бурения. Помимо глинистых растворов используются биополимерные, эмульсионные, аэрированные, в некоторых случаях даже нефть и природный газ. На скважину глубиной 1000 м надо заготовить не менее 100 м³ раствора.

В некоторых случаях, например, когда скважина проходит через породы с высокой пористостью и проницаемостью, раствор начинает просачиваться в пласты. Иногда его выход на поверхность и вовсе прекращается. Чтобы справиться с поглощением бурового раствора, в его состав добавляют различные компоненты, такие как асбест, слюда, древесные опилки, целлофан, известь или даже рисовая шелуха.

Между пластом и поверхностью

Скважина — это узкий цилиндрический канал, соединяющий пласт-коллектор с поверхностью земли. Верхняя часть скважины называется устьем, дно — забоем, а выработка между ними — стволом. Для разобщения пластов, предотвращения обвалов стенок, поглощений бурового раствора и проникновения в скважину флюидов в нее опускают обсадные трубы. Как правило, процесс этот происходит поэтапно: сначала скважину бурят до определенной глубины, затем устанавливают обсадные трубы, после чего продолжают бурение долотом меньшего диаметра. Пространство между обсадной колонной и стенками скважины заполняется цементным раствором (тампонаж), образующим цементный стакан, который предотвращает заколонные перетоки.

Скважины бывают вертикальными или наклонными, а также могут иметь различные искривления, возникающие из-за естественных причин или созданные намеренно — чтобы обойти какое-то препятствие (соляной купол, зону обвала или катастрофического поглощения бурового раствора, водоем, населенный пункт, особо охраняемую территорию, бурение на которой запрещено) или захватить более значительный участок продуктивного пласта. В последнем случае часто бурятся горизонтальные скважины. Это наклонные скважины, которые постепенно искривляются и уже в самом продуктивном пласте переходят в горизонтальную плоскость. Наличие горизонтального участка позволяет повысить коэффициент извлечения нефти. Для заданного искривления ствола скважины применяются специальные инструменты: отклонители, укороченные турбобуры, специальные переводники, забойные телеметрические системы.

Скважины, как правило, располагают кустами. В этом случае устья нескольких наклонно-направленных скважин группируются на близком расстоянии друг от друга на общей ограниченной площадке. Сами же скважины вскрывают нефтяной пласт в разных точках, местоположение которых просчитывается заранее. В настоящее время большинство эксплуатационных скважин бурится кустовым способом. Это дает возможность сократить время на монтаж вышки, снизить затраты на строительство трубопроводов, линий электропередач и другой инфраструктуры.

Типы скважин

В зависимости от условий месторождения скважины бывают:

Особые обстоятельства

Легкодоступных запасов углеводородов в мире становится все меньше, поэтому нефтяники вынуждены разрабатывать месторождения на новых территориях, в совершенно новых внешних условиях. Например, в море. Хотя общий принцип бурения на морских месторождениях остается тем же, что и на суше, отличия все же есть.

Вариантов шельфовой добычи несколько. На небольших глубинах бурение часто ведется с насыпных островов, как это происходило, например, на Каспии, где разработка морских месторождений началась еще в 1940-х годах. Затем для этих целей стали строить стационарные платформы — первая в мире морская нефтяная платформа, Нефтяные Камни, была построена также в Каспийском море на металлических эстакадах в 1949 году в 40 км от Апшеронского полуострова. К платформам такого типа можно отнести и первую в российской Арктике нефтедобывающую платформу «Приразломная», закрепленную на дне Печерского моря.

На больших глубинах работают плавучие буровые установки, которые классифицируют по способу установки над скважиной, выделяя две основные группы: опирающиеся при бурении на морское дно и работающие в плавучем состоянии. К первой группе относят плавучие буровые установки самоподъемного и погружного типов, а ко второй — полупогружные буровые установки и буровые суда.

При бурении скважин на море приходится предпринимать особые меры безопасности и использовать оборудование, в котором наземные бурильщики просто не нуждаются. К примеру, так называемый райзер — колонну стальных труб с толщиной стенок около 20 мм, тянущуюся от судна или буровой платформы до дна. Это необходимо, чтобы предохранить буровой инструмент от воздействия окружающей среды и защитить океан от загрязнения нефтепродуктами.

С особыми сложностями может быть связано и бурение в зоне вечной мерзлоты. В верхней части геологического разреза многих северных районов (Сибирь, Аляска, Канада и др.) залегает толща многолетнемерзлых пород, мощность которой иногда превышает 500 м. В ее состав могут входить пески, галечники и другие породы, единственный цементирующий материал для которых — лед. За счет более высокой температуры бурового раствора, твердеющего цемента или добываемой нефти лед оттаивает, вызывая оседание толщи пород и заклинивания бурового инструмента. Чтобы избежать аварий, в таких случаях приходится постоянно поддерживать отрицательную температуру стенок скважины.

Геонавигация в бурении

В 2012 году в «Газпром нефти» было принято решение о создании Центра геологического сопровождения строительства скважин. Главная задача для специалистов центра — проектирование горизонтального участка скважины в максимально продуктивном участке пласта, отслеживание процесса ее бурения — и в случае необходимости корректировка ее траектории. Основной рабочий инструмент — лучшие современные программы для обработки данных и оборудование для геонавигации.

Процесс геонавигации заключается в оперативном получении информации о геологической модели месторождения по мере бурения и корректировке траектории скважины в соответствии с ней. Современные телекоммуникационные технологии позволяют передавать данные на Большую землю в реальном времени. Свежая информация отображается на имеющейся геологической модели месторождения. Фактические данные сравниваются с проектными, анализируются, и, если нужно, траектория скважины корректируется таким образом, чтобы попасть в намеченную зону нефтенасыщенного коллектора. Затем, с поступлением новой информации, цикл повторяется, обеспечивая непрерывный контроль бурения.

Для эффективной геонавигации используются передовые технологии исследования скважин во время бурения LWD (logging while drilling — каротаж в процессе бурения). В отличие от стандартных методов ГИС (геофизические исследования скважин) онлайн-каротаж LWD позволяет значительно экономить время на исследованиях, а в конечном итоге — на освоении всего пласта. Применяемый в процессе бурения азимутальный нейтронно-плотностной и азимутальный боковой каротаж высокого разрешения дает возможность более корректно оценивать состав и свойства пласта.

Разрушитель пород

Буровые долота можно разделить по типу конструкции на шарошечные и лопастные. Название «долото» историческое, оно сохранилось с тех пор, когда скважины строили ударным способом. Сегодня все долота вращаются при бурении.

Еще 15 лет назад шарошечные долота считались универсальными, их применяли для бурения нефтяных и газовых скважин, для разбуривания пород любой твердости. Однако даже для самых высокопрочных шарошечных долот длина проходки не превышает после чего их нужно заменять. Поэтому сегодня практически повсеместно используются лопастные PDC-долота (polycrystalline diamond bits) с разрушающими породу поликристаллическими алмазными зернами. Эти долота обладают очень высокой износостойкостью и могут пройти без замены до нескольких километров породы.

источник