Меню Рубрики

Установки для сжижения азота

Автономные компактные станции LNP и Stirlin для производства жидкого азота из атмосферного воздуха

Азотные станции (ожижители азота, генераторы жидкого азота) полностью автоматизированы и предназначены для производства жидкого азота в объемах от 10 до 3500 литров жидкого азота в сутки. Могут быть установлены в небольших помещениях. Требуют минимального обслуживания. Наработка до первого сервисного обслуживания не мене 8 000 часов.

Представлены установками нескольких типов, на базе мембранного блока разделения газа, блока разделения газа на принципе молекулярного сита, ректификационной колонны. В установках используются криогенные машины типа Стирлинг и Гиффорда МакМагона.

Азотные ожижительные станции Elan2 производительностью 6 литров жидкого азота в сутки (0.25 л/час).

Азотные ожижители выполнены на базе мембранного блока разделения газа и холодильной машины на смесевом цикле. Наработка до первого сервисного обслуживания не менее 8 000 часов.

Производительность
— литров в сутки
— литров в час

Азотные ожижительные станции LNP производительностью 10-120 литров жидкого азота в сутки (0.4-10 л/час).

Азотные ожижители выполнены на базе мембранного блока разделения газа и холодильной машины на цикле Гиффорда МакМагона. Наработка до первого сервисного обслуживания не менее 8 000 часов.

Производительность
— литров в сутки
— литров в час

базовая 98%, опционально 99% либо 99.99%

Азотные ожижительные станции STIRLIN производительностью 120-3600 литров жидкого азота в сутки (5-150 л/час).

Азотные ожижители выполнены на базе адсорбционного блока разделения газа и холодильной машины на цикле Стирлинга. Наработка до первого сервисного обслуживания не менее 6 000 часов.

Производительность
— литров в cутки
— литров в час

Компания «Криотрейд инжиниринг» поставляет азотные станции, выполняет пусконаладочные и необходимые сервисные работы на территории России и СНГ.

125367, г.Москва,
Полесский проезд, д. 14а

© 2008 — 2019 «ООО Криотрейд инжиниринг». Карта сайта Доставка и оплата

Любое коммерческое использование представленных на сайте материалов без ведома и прямого письменного разрешения Компании Криотрейд инжиниринг не допускается и будет преследоваться согласно российскому и международному законодательству.

источник

Получение азота

Технический азот в жидком и газообразном состоянии получают из атмосферного воздуха. Вещество является достаточно распространенным химическим элементом. Атмосфера Земли на 75% состоит из азота, однако в чистом виде для дыхания он непригоден. Тем не менее в организме человека протекают сотни процессов, на скорость и качество которых влияет это вещество. Например, азот входит в состав гемоглобина, аминокислот и белков. К тому же он содержится в клетках растений и животных.

В молекуле газа находятся два атома, соединенных очень прочно. Чтобы азот вошел в состав химического соединения, эту связь необходимо разорвать либо ослабить, а это достаточно трудно. Значительно проще происходит обратный процесс выхода азота из различных соединений. Реакция горения всегда протекает с образованием свободного газа.

Богатый источник азота – чилийская селитра (нитрит натрия). В начале XIX века из нее получали удобрения и порох. Со временем запасы полезного ископаемого уменьшались, а потребности в нитратах только увеличивались. В начале XX века был получен азот из атмосферного воздуха и связан в аммиак. Для этого пришлось применить высокую температуру, давление и ввести в реакцию катализаторы. С тех пор вопрос о получении азота получил новое решение, так как атмосфера является его неисчерпаемым источником.

Благодаря инертным и другим свойствам этот газ нашел применение в:

  • разработке угольных пластов;
  • бурении скважин;
  • упаковке продуктов;
  • пожаротушении;
  • высокотемпературной обработке металлов и т. д.

Физические характеристики вещества

В нормальных условиях (при атмосферном давлении 760 мм рт. ст. и температуре 0°С) вещество представляет собой газ без запаха и цвета, который плохо растворяется в воде. Он не вступает в реакции с другими элементами за исключением лития. При нагревании азот приобретает способность к диссоциации на атомы и создает различные химические соединения. Наиболее востребована его реакция с водородом, в результате которой получается аммиак, используемый для изготовления удобрений, хладагента, синтетических волокон и пр. Газообразный азот пожаро- и взрывобезопасен, к тому же он препятствует гниению и окислению. Вещество нетоксично, поэтому не оказывает опасного влияния на окружающую среду. Но при длительном вдыхании вызывает кислородную недостаточность и удушье.

При охлаждении до -195,8°С азот превращается в жидкость, напоминающую по внешнему виду обычную воду. Температура кипения данного вещества несколько ниже, чем у кислорода. Поэтому при нагревании жидкого воздуха азот начинает испаряться первым. Данное свойство лежит в основе современного принципа производства химического продукта. Многократное повторение сжижения и вскипания дает возможность получить азот и кислород в нужной концентрации. Данный процесс получил название ректификации.

Если азот в жидком состоянии, объем которого составляет 1 литр, нагревать до +20°С, он будет испаряться и образует 700 литров газа. Поэтому вещество хранят в специальных емкостях открытого типа с вакуумной изоляцией либо в криогенных сосудах под давлением.

Последующее охлаждение азота до -209,86°С переводит его в твердое агрегатное состояние. Получаются большие белоснежные кристаллы. При последующем контакте с воздухом снегоподобная масса поглощает кислород и плавится.

Промышленное производство

В настоящее время в основном используют три технологии для получения инертного азота, основанные на разделении атмосферного воздуха:

Разделяющие криогенные установки функционируют по принципу сжижения воздуха. Сначала он сжимается компрессором, затем проходит через теплообменники и расширяется в детандере. В результате охлажденный воздух становится жидкостью. За счет разной температуры кипения кислорода и азота происходит их разделение. Процесс многократно повторяется на специальных ректификационных тарелках. Завершается он получением чистейшего кислорода, аргона и азота. Данный способ наиболее эффективен для крупных предприятий по причине значительных габаритов системы, сложности ее пуска и обслуживания. Достоинство метода состоит в том, что можно получить азот наивысшей чистоты, как жидкий, так и газообразный, в любых количествах. При этом расход энергии на изготовление 1 л вещества составляет 0,4-1,6 кВт/ч (в зависимости от технологической схемы установки).

Мембранная технология разделения газов начала применяться в 70-х годах прошлого века. Высокая экономичность и эффективность данного метода послужила достойной альтернативой криогенному и адсорбционному способам получения чистого азота. Сегодня в установках используются мембраны последнего поколения высокой производительности. Теперь это не пленка, а тысячи полых волокон, на которые нанесен селективный слой. Подвижные составляющие в установке отсутствуют, поэтому значительно увеличивается продолжительность ее эксплуатации без поломок. Отфильтрованный воздух подается в систему. Кислород беспрепятственно проходит сквозь нее, а азот выводится под давлением через противоположную сторону мембраны и направляется в накопитель. С помощью данных установок изготавливается вещество с чистотой до 99,95%. Таким образом осуществляется производство азота из атмосферного воздуха. Ограниченная чистота получаемого азота не позволяет применять данный метод крупным изготовителям с большими потребностями высокочистого азота.

На тех предприятиях, где востребован азот высокой чистоты в больших объемах, применяется установка для разделения газовых смесей при помощи адсорбентов. Конструктивно она представляет собой две колонны. В каждой из них находится вещество, селективно поглощающее газовую смесь. Для функционирования установок по производству азота требуется атмосферный воздух, электроэнергия.

Изначально воздух попадает в компрессор, где происходит его сжатие. Затем он подается в ресивер, который выравнивает его давление. Так как воздух не должен содержать водяных паров, пыли, двуокиси углерода, окислов азота, ацетилена, а также других примесей, его фильтруют. Наступает основной этап адсорбционного разделения газовой смеси. Поток воздуха пропускается через одну колонну с углеродными молекулярными ситами до тех пор, пока они способны поглощать кислород. После этого поверхность адсорбента необходимо очистить, то есть регенерировать, путем сброса давления или повышением температуры. А воздух направляется во вторую колонну. В это время азот проходит сквозь агрегат и накапливается в ресивере. Продолжительность циклов адсорбции и регенерации составляет всего несколько минут. Чистота получаемого по данной технологии азота составляет 99,9995%.

Преимущества адсорбционных установок:

  • быстрый пуск и остановка;
  • возможность дистанционного управления;
  • высокая разделительная способность;
  • низкое энергопотребление;
  • возможность оперативной переналадки;
  • автоматическое регулирование режима;
  • низкие затраты на обслуживание.

Области применения газа

Сегодня данный продукт востребован во многих отраслях промышленности: газовой, пищевой, металлургической. Однако крупные масштабы добычи азота актуальны именно для нефтехимической индустрии. Основная область применения – изготовление одноименной кислоты и других удобрений для сельского хозяйства. В технике азот используют для охлаждения различного оборудования и агрегатов. Он создает инертную среду при перекачивании горючих жидкостей.

В фармацевтике азот применяют для транспортировки химического сырья, защиты резервуаров и упаковки лекарственных средств. В электронике он предотвращает окисление в процессе производства полупроводников.

В пищевой промышленности азот в жидком состоянии используется как охлаждающий и замораживающий элемент. В газообразном виде его применяют в целях создания инертной среды при розливе негазированных напитков и масел, а также производят пропеллент для баллончиков.

Наиболее эффективный способ тушения пожаров – азотное пожаротушение. Испаряясь, вещество быстро вытесняет кислород, который требуется для поддержания горения, и огонь затухает. Затем азот быстро выветривается из помещения, при этом сберегаются материальные ценности, которые могли быть повреждены пеной, порошком или водой.

В медицине при помощи криогенной консервации сохраняют клетки и органы. Кроме того, жидким азотом разрушают пораженные участки тканей.

Хранение и соблюдение техники безопасности

Автотранспортом азот в жидком состоянии перевозят в специальных криогенных сосудах или цистернах. Потребителям доставляют газообразное вещество в сжатом виде в черных баллонах. Хранят азот в сосудах Дьюара, имеющих двойные стенки, между которыми находится вакуум. В целях уменьшения передачи тепла поверхности делают зеркальными за счет слоя серебра. Сосуды Дьюара могут быть разного объема. Емкости, вмещающие десятки литров, изготавливают из металла. В таком сосуде вещество может храниться несколько недель.

Кратковременный контакт кожи с жидким азотом не представляет серьезной опасности, так как в месте соприкосновения образуется воздушная подушка, обладающая низкой теплопроводностью. Именно она защищает ткани от травмирования. Длительный контакт азота с кожей, глазами или слизистыми оболочками вызывает их тяжелое повреждение. Пораженный участок при попадании вещества необходимо незамедлительно промыть большим количеством воды.

При испарении азота происходит его накопление на уровне пола рабочего помещения из-за низкой температуры и большей плотности, чем у воздуха. Незаметно для человека создается высокая концентрация вещества, а количество кислорода уменьшается. Это влияет на общее самочувствие: нарушается ритм дыхания и учащается пульс. При тяжелом исходе ситуации расстраивается сознание и теряется способность двигаться. Опасность состоит в том, что отравление происходит незаметно для человека, пострадавший не осознает серьезности ситуации. Поэтому помещения, в которых производится или используется азот, обязательно оснащаются надежной системой вентиляции.

Современные воздухоразделительные установки

Компания «Современные газовые технологии» предлагает отказаться от приобретения данного вещества, организовав его самостоятельное изготовление. В таком случае себестоимость полученного азота в 10-20 раз меньше покупного. Если вашему предприятию потребуется собственный источник азота, наши специалисты ознакомят вас с техническими характеристиками имеющихся установок. Мы поможем сделать оптимальный выбор агрегатов, организуем их поставку, монтаж, пуск и наладку.

Производите азот сами – отправляйте заявку на оборудование со страниц нашего сайта!

источник

Установки для получения жидкого азота LNP

Компактные ожижители азота LNP от известного американского производителя — компании Cryomech Inc. (США) для производства жидкого азота из атмосферного воздуха.

Серия генераторов жидкого азота LNP представлена компактными установками производительностью 10 – 240 литров в сутки. Генераторы жидкого азота работают в автоматическом режиме, не требуют постоянного присутствия оператора и очень надежны в эксплуатации. Для производства жидкого азота требуется только воздух и электроэнергия. Газообразный азот производится путем сжатия, очистки и дальнейшего разделения воздуха на азотной мембране. После разделения на мембране, либо блоке КЦА азот чистотой 98% (опционально 99% либо 99.99%) поступает в сосуд Дьюара, где конденсируется при давлении близком к атмосферному на холодном теплообменнике криогенного рефрижератора. Жидкий азот извлекается из сосуда Дьюара через гибкий криогенный шланг при открытии вентиля подачи жидкого азота.

Гарантийный период работы установки — 1 год или 8 000 часов (что наступит раньше)

Параметр модель StirLIN-1 StirLIN-2 StirLIN-4 StirLIN-8
Параметр LNP-10 LNP-20 LNP-40 LNP-60 LNP-120 LNP-240
Производительность,
— литров в сутки
— литров в час
10
0,45
20
0,85
40
1,7
60
2,5
120
5,0
240
10,0
Чистота жидкого
азота
98%, опционально 99% либо 99.99%
Накопительная
емкость, литров
35 100 160 210 300 500
Энергопотребление,
кВт
2,2 4,0 5,3 8,1 14,8 22,0
Тип охлаждения водяное или воздушное
Электропитание 1 фаза 220В 3 фазы 380В
Занимаемая площадь не более 4-ех квадратных метров

Установка для получения жидкого азота LNP (Cryomech Inc.)

Основные части:

1. Генератор азота c воздушным компрессором;

2. Криогенный ожижитель с гибкими шлангами игелиевым компрессором;

3. Сосуд Дьюара с уровнемером и линией выдачи жидкого азота;

5. Запасные части на 8000 часов непрерывной работы;

6. Инструкция на русском/английском языке;

Опционально могут быть поставлены:

— увеличение чистоты азота до 99.99%;

— расходные материалы на два дополнительных года непрерывной работы;

источник

Получение азота. Генератор азота, азотная установка адсорбционного типа

Получение азота. Изготовление, сборка, тестирование и испытание генераторов азота (азотных установок) адсорбционного типа
производится на заводах в Швейцарии, Германии, Франции, Турции, США, Японии и Кореи

Компания в России Интех ГмбХ / LLC Intech GmbH на рынке инжиниринговых услуг с 1997 года, официальный дистрибьютор различных производителей промышленного оборудования, предлагает Вашему вниманию различные генераторы азота, азотные установки.

Общее описание и способы получения азота

Одним из самых известных, распространённых на нашей планете элементов является азот. Его содержание в атмосфере составляет более 78%. Это вещество может быть в связанном состоянии как органическим, так и неорганическим. Соединения азота важны для использования в сельском хозяйстве и промышленности. Каким способом следует получать азот, обусловлено необходимой чистотой данного элемента.

В промышленности получают азот следующими способами:

  • фракционная дистилляция жидкого воздуха — способ, основанный на разных температурах кипения для кислорода и для азота;
  • реакция (химическая) воздуха с раскаленным каменным углем;
  • газоразделение адсорбционным методом.

Фракционная дистилляция считается одним из самых экономичных методов получения молекулярного азота и представляет собой способ последовательного сжижения очищенного воздуха посредством охлаждения и расширения. Получив жидкий воздух, его перегоняют через фракции, поднимая медленно температуру. В результате этого сначала происходит выделение благородных сортов газов, а затем и азота. Однако температура кипения у азота -195,8 °C, немного ниже температуры другой составляющей воздуха, кислорода (-182,9°C). Так что, если осторожно нагревать жидкий воздух, то азот будет испаряться сначала. Азот в газообразном состоянии идёт потребителю в сжатом виде (15 МПа), им заполняют черные баллоны с желтой надписью «азот». Остается лишь кислород в жидком виде.

Такой способ получения азота обеспечивает ежегодное производство многих миллионов тонн азота. Далее азот идёт на последующую переработку для производства аммиака, роль которого в качестве сырья состоит в получении сельскохозяйственных и промышленных соединений, содержащих азот. Чистая азотная атмосфера может быть использована также в случае необходимости полного отсутствия кислорода.

Посредством дистилляции фракций есть возможность получить и «атмосферный азот».

Для получения этого вещества в промышленности широкое применение находят азотные установки, так называемые азотогенераторы, в которых используются различные методы газоразделения. Благодаря наличию новых современных технологий концентрация выпускаемого азота может достигать 10 ppm (99.999%).

Азот газообразной и жидкой фракций получают в процессе разделения воздуха атмосферного. Более 78 % по массе — довольно высокое содержание этого газа в атмосфере. Это гарантирует данному варианту получения азота экономичность, удобство выполнения, эффективность. Для получения азота используются специальные агрегаты, работающие на принципе мембранного, криогенного или адсорбционного разделения смеси воздуха. Основанные на принципе адсорбционного и мембранного разделения воздуха установки более просты в эксплуатации и являются довольно дешевыми. Принцип их действия основан на поглощении кислорода из атмосферного воздуха и поглощении других газовых примесей. Оборудование же криогенного принципа действия более сложно, требует высококвалифицированного обращения, однако применяется для получения жидкого азота. Конкретное решение и выбор метода получения азота зависит от области использования газа.

Лабораторные условия предполагают получение азота несколькими способами.

1) Самый известный способ его получения это реакция, основанная на разложении нитрита аммония:

Эта реакция протекает экзотермически, в ходе её протекания выделяется 80 ккал и требуется охлаждение ёмкости (сосуда). Однако в начале реакции нитрит аммония необходимо нагреть. При дальнейшем протекании реакции в насыщенный и нагретый раствор сульфата аммония по каплям добавляют раствор нитрита натрия, тоже насыщенный. Происходит реакция обмена, в ходе которой моментально разлагается нитрит аммония. Полученный при этом газ загрязнён оксидом азота, аммиаком и кислородом. От этих примесей он очищается при последовательном пропускании его через растворы сульфата железа, серной кислоты, а также его пропускают над раскалённой медью. Очищенный азот затем осушают.

2) Также можно получить азот лабораторным способом, который состоит в нагревании смеси в пропорции 1:2 по массе, состоящей, соответственно, из сульфата аммония и дихромата калия. Следующие уравнения отображают ход реакции:

3) При помощи разложения азидов металлов можно получить самый чистый азот:

4) Смесь благородных газов с азотом под названием «азот атмосферный» или «воздушный» можно получить путём реакции раскалённого кокса с воздухом:

Получается при этом, как его ещё называют, газ «генераторный» или «воздушный». Это, в принципе, сырьё, применяемое в качестве топлива или для химических синтезов. При поглощении монооксида углерода из этого сырья можно, при необходимости, выделить азот.

5) Следующий лабораторный способ, применяемый для получения азота, состоит в том, что аммиак пропуска над оксидом меди. Делается это при температуре около 700 °C:

Его (аммиак) берут из насыщенного нагреваемого аммиачного раствора. Количество окиси меди должно быть больше расчётного в 2 раза. Делается это непосредственно перед использованием: очищение азота от примесей аммиака и кислорода происходит при пропускании его над медью и оксидом меди (как мы упоминали выше при описании процесса разложения нитрита аммония), а затем его высушивают сухой щёлочью и при помощи серной кислоты (концентрированной). Это весьма медленный процесс, однако, он себя оправдывает: получаемый газ обладает достаточно хорошими показателями по чистоте.

6) А вот чистый азот или «химический» получают в лабораториях при добавлении хлорида аммония NH4Cl (при нагревании и насыщенного раствора) к нитриту натрия NaNO2 (твёрдому):

В зависимости от оснащённости лабораторий оборудованием, в лабораториях можно получать азот посредством его выделения из других веществ в ходе определённых химических реакций или при разложении или распаде последних, например:

1) с взрывом разлагается нитрит аммония (твёрдый):

2) при реакции окисления аммиака получаем:

3) при взаимодействии металла с азотной кислотой в разбавленном виде:

4) азид лития при термическом разложении даёт:

источник

Читайте также:  Установка viber для компьютера