Меню Рубрики

Установки для вторичной перегонки мазута

Основные схемы вакуумной перегонки мазута

Перегонку остатка из атмосферной колонны — мазута—осуществляют при пониженном давлении на вакуумном блоке установок АВТ. Если пере­гонять мазут для разделения его на фракции при атмосферном давлении (или близком к нему), это потребует нагрева его до 400°С и выше. При этом высокомолекулярные углеводороды и тяжелые смолистые соединения, вхо­дящие в состав мазута, будут, наряду с перегонкой, расщепляться с образова­нием кокса, газов разложения и более легких углеводородов. Естественно, качество целевых продуктов, получаемых в столь жестких термических усло­виях не будет отвечать заданной цели, например, получению масляных фрак­ций или сырья для каталитического крекинга.

Чтобы этого не произошло, при перегонке мазута следует понизить давление, вплоть до создания остаточного давления в системе порядка 20-40 мм рт.ст., и понизить парциальное давление нефтяных паров в ко­лонне. Такая схема перегонки осуществляется в вакуумных колоннах. Вакуум создается специальными аппаратами (барометрическими или поверхностными конденсаторами) за счет конденсации водяных паров в вакуумсоздающей системе и отсасывания несконденсированной части нефтяных паров и газов с помощью паровых эжекторов. При перегонке ма­зута под вакуумом практически исключается его разложение и достига­ется желаемое качество дистиллятов.

На современных установках вакуумной перегонки мазута реализуют­ся в основном две схемы: перегонка мазута с однократным испарением всех фракций и разделением их в одной вакуумной колонне и перегонка мазута с двухкратным испарением и разделением отгоняемых фракций в двух вакуумных колоннах.

Получаемые продукты при вакуумной перегонке могут быть исполь­зованы либо в качестве сырья для каталитического крекинга или гидро­крекинга, либо в качестве масляных фракций, которые после соответ­ствующего облагораживания (гидрообработки, селективной очистки, ка­талитической депарафинизации либо низкотемпературной депарафи- низации в среде растворителей, контактной доочистки и др.) могут яв­ляться различными базовыми маслами.

Как правило, для получения вакуумных газойлей с пределами выки­пания 350-500°С в качестве сырья каткрекинга или гидрокрекинга впол­не достаточно однократного испарения. Обычно вакуумные установки сооружают в едином комплексе с ат­мосферной ступенью, и таковой комплекс может работать по схеме трех- и четырехкратного испарения. В каждом конкретном случае выбор схе­мы установки является результатом многофакторного экономического анализа (качество сырья, потребности данного региона в ассортименте и количестве нефтепродуктов по ассортименту и др.).

Мазут, который выводится с низа колонны К-2 нагревается в печи П-3 и с температурой 400-420°С поступает в вакуумную колонну К-6. В этой колонне предлагается разместить 16 клапанных тарелок. С верха колонны пары отводятся к вакуумсоздающей аппаратуре. С верхней тарелки отводим утяжеленное дизельное топливо, часть которого возвращаем в колонну в качестве орошения. Боковым погоном из колонны К-6 выводим вакуумный газойль (350-490°С). Его отбор производится с 10 тарелки. Вакуумный газойль поступает в стриппинг-колонну К-6/1, в низ которой подается водяной пар. С низа колонны выводим гудрон (остаток, выкипающий при температуре выше 490°С). В нижнюю часть колонны подаем водяной пар для снижения парциального давления углеводородов. Избыток тепла в колонне снимаем циркуляционным орошением.

Схема вакуумной перегонки мазута приведена на рис. 3.4

Диаметр нижней части корпуса вакуумных колонн обычно меньше; для колонны показанной на рис.1, он равен 4 500 мм. С одной стороны, это обеспечивает меньшее время пребывания гудрона в нижней части колонны и уменьшает вероятность его термического разложения. С другой стороны, объем паров в нижней части колонны меньше, чем в верхней части, поэтому нет необходимости выполнять нижнюю часть колонны большего диаметра. В верхней части колонны паров меньше, чем в средней части, поэтому верхняя часть колонны выполненна диаметром 7000 мм.

При изготовлении вакуумных аппаратов большого диаметра должны быть обеспечены минимальные отклонения от правильной формы, так как они ведут к перенапряжениям в стенке аппарата и снижению запаса устойчивости формы корпуса.

Над вводом сырья и в верхней части вакуумных колонн устанавливают отбойные устройства, обеспечивающие достаточно эффективное отделение капель от паров при высокой скорости последних. В колонне на рис.1 отбойное устройство предусмотрено также и в средней части под тарелкой вывода продукта; оно выполнено из прямоугольных коробов с боковыми стенками из многослойной сетки.

В колонне применены двухпоточные ситчатые тарелки с отбойными элементами и прямоточные клапанные тарелки; последние установлены в контуре циркуляционных орошений (в верхней ,средней части) и внизу колонны. Расстояние между тарелками принято 800 мм.

4.3 основная схема блока стабилизации и вторичной ректификации бензиновой фракции

Блоки стабилизации установок АВТ предназначены для выделения из бензинов растворенных в них углеводородных газов и сероводорода.

Бензиновую фракцию 28-120 °C направляем в колонну стабилизации. Данный вариант – стабилизация бензиновой фракции в одной ректификационной колонне с отбором рефлюкса (сжиженной пропан-бутановой фракции) заданного качества и стабильного бензина с необходимым давлением насыщенных паров.

После стабилизации бензиновую фракцию 28-120 °C необходимо разделить на более узкие фракции: 28-70 °C, 70-120 °C. Для вторичной ректификации выбираем схему, состоящую из одной простой колонны. Стабильный бензин, уходящий с низа колонны стабилизации К-3, поступает в колонну К-4, где происходит разделение на фракции 28-70 °C и 70-120 °C. Фракция 28-70 °C выводится с установки, а фракция 70-120 °C поступает во вторую простую колонну К-5, предварительно нагреваясь в теплообменнике. В колонне К-5 происходит разделение фракции 70-180 °C на фракции 70-120 °C и 120-180 °C, которые выводятся с установки. Принципиальная схема блока стабилизации и вторичной ректификации бензиновой фракции представлена на рис. 3.3

Схема блока стабилизации и вторичной ректификации бензиновой фракции

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Вакуумная перегонка мазута

Основное назначение установки вакуумной перегонки мазута — получение вакуумного газойля

Вакуумная перегонка мазута

Для вакуумной перегонки мазута используется вакуумная установка топливного профиля. Основное назначение устройства — получение тжелого и легкого газойля с широким фракционным составом, а так же гудрона и затемненной фракции.

Мазут — остаток первичной перегонки нефти

Газойль вакуумный используют как сырье для установок каталитического крекинга и в некоторых случая термического.

Вакуумная установка перегоняет следующие типы мазутов:

1. Топочные мазуты — жидкое топливо, основная разновидность. Применяется в стационарных паровых котлах и промышленных печах а так же в тяжелых моторных и судовых энергеитических установках.

Вид топлива — нефтяной. Топочные мазуты получают н заводах по нефтепереработке при перегонке нефти или при переработке при высокой температуре ее промежуточных фракций (крекинге).

2. Прямогонные мазуты — представляет из себя смесь из остатков нефти с маловязкими фракциями и тяжелыми остатками. Для поддержания вязкости мазута возникает необходимость подмешивать дистилляторы к тяжелому остатку.

Установки вакуумные

Основное назначение установки вакуумной перегонки мазута топливного профиля — получение лёгкого и тяжёлого вакуумного газойля широкого фракционного состава (350 — 520 °С),затемнённой фракции, гудрон.

Вакуумный газойль используемого как сырье установок каталитического крекинга, гидрокрекинга или пиролиза и в некоторых случаях — термического крекинга с получением дистиллятного крекинг — остатка, направляемого далее на коксование с целью получения высококачественных нефтяных коксов.

Мазут, отбираемый с низа атмосферной колонны блока AT, прокачивается параллельными потоками через печь в вакуумную колонну.

Смесь нефтяных и водяных паров, газы разложения (и воздух, засасываемый через неплотности) с верха вакуумной колонны поступают в вакуумсоздающую систему.
Первым и вторым боковым погоном отбирают широкую газойлевую (лёгкую и тяжёлую) фракцию.
Часть ее после охлаждения используется как среднее циркуляционное орошение вакуумной колонны.

Балансовое количество целевого продукта вакуумного газойля после теплообменников и холодильников выводится с установки и направляется на дальнейшую переработку.
С нижней тарелки концентрационной части колонны выводиться затемненная фракция, часть которой используется как нижнее циркуляционное орошение, часть — может выводиться с установки или использоваться как рецикл вместе с загрузкой вакуумной печи.
С низа вакуумной колонны отбирается гудрон и после охлаждения в теплообменнике возвращается в низ колонны в качестве квенчинга.

В низ вакуумной колонны и змеевик печи подается водяной пар.

С верха вакуумной колонны газы разложения, водяной пар и увлекаемые нефтяные пары поступают в межтрубное пространство конденсаторов, где охлаждаются оборотной водой или хладоагентом от холодильной машины , подаваемой в трубное пространство.

Затем возможно дальнейшее охлаждение в тосольных холодильниках до температуры 10-20 °С, вследствие чего происходит конденсация большей части водяных паров.
Конденсат из блока конденсаторов по сливным трубам поступает в барометрическую ёмкость.

Вакуумный керосин через переливную перегородку ёмкости перетекает в секцию нефтепродукта, откуда по уровню откачивается с установки насосом.

Вода из ёмкости через клапан регулятор уровня, установленный на нагнетании насоса также откачивается с установки.

Небольшое количество газов разложения, попавшее с жидкостью в ёмкость, возвращается в шлемовую линию колонны перед эжекторным блоком.

В начальный период пуска нефтепродукт в ёмкость закачивается с блока АТ или из промежуточного парка.
В качестве рабочего агента в эжекторе можно использовать поток лёгкого вакуумного газойля или дизельного топлива атмосферной колонны, подаваемый с линии вакуумного блока.

Газовый поток после охлаждения в тосольном холодильнике-конденсаторе захватывается в эжекторе рабочей жидкостью и газожидкостная смесь поступает в сепаратор на разделение.
Для обеспечения разделения газов разложения, конденсата водяного пара и рабочей жидкости, а также обеспечения «гидрозатвора» при аварийной остановке сепаратор разделён на секции. Предотвращение выноса капельной жидкости и качественное отделение газов разложения перед выводом в конструкции аппарата обеспечивается узлом сепарации, оборудованным контактным устройством.
Если присутствует значительная доля сероводорода, то верхнюю часть сепаратора покрывают антикоррозийным материалом. Поступающая в сепаратор газожидкостная смесь разделяется на три потока:
1. Рабочий поток активной жидкости (лёгкий вакуумный газойль или дизельная фракция) охлаждается затем в водяном холодильнике и поступает на прием высоконапорных насосов и далее с нагнетания насосов поступает на вход в эжекторные блоки. Для предотвращения забивки сопел эжекторов механическими примесями (особенно после ремонтов и остановок) на линиях нагнетания предусматриваются фильтры.
2. Для предотвращения насыщения рабочего потока лёгкими углеводородами и накопления конденсата водяного пара в сепараторе часть рабочей жидкости (вакуумного дистиллята) выводится насосами в линию вакуумного дистиллята установки для дальнейшей переработки. Предусмотрена схема вывода пара из сепаратора. Для пополнения уровня рабочей жидкости в сепаратор подаётся свежий поток из бокового погона вакуумной колонны. При пуске установки после капитального ремонта предусматривается линия подачи вакуумного дистиллята (дизельного топлива) со стороны.
3. Газы разложения из сепаратора поступают на горелки печи, а также могут подаваться на факел.

источник

Переработка мазута. Способы и конечные продукты переработки

В процессе переработки нефти образуется осадок – мазут. Он является тяжелым веществом, ухудшающим качество ископаемого. Именно поэтому мазут из него удаляют. Между тем он сохраняет горючие свойства, а его стоимость намного меньше, чем у бензина, керосина и дизельного топлива.

Получение мазута

Основной способ получения мазута – переработка нефти или ее продуктов. Полученная густая темно-коричневая жидкость представляет собой смесь тяжелых веществ. Реже применяется способ обогащения каменного угля и других полезных ископаемых, обладающих горючими свойствами.

На сегодняшний день все большую популярность обретает переработка шин в мазут, точнее, в маслянистую жидкость, схожую с ним по всем показателям.

Преимущества

Мазут является относительно безопасным горючим веществом. Если утечка природного газа создает серьезную угрозу взрыва, то пожар, возникший в результате розлива нефти или продуктов ее переработки, ликвидируется намного легче.

Читайте также:  Установка зажигания на бензогенератор хонда

Кроме того, мазут имеет следующие преимущества:

  • невысокая стоимость;
  • способен вырабатывать большое количество электроэнергии;
  • может использоваться в сочетании с биотопливом.

Недостатки

Главным недостатком мазута является урон, наносимый окружающей среде. При его сгорании образуются такие же отходы, как при использовании угля. Далеко не каждая страна может себе позволить приобрести современные системы, уменьшающие степень токсичности выбросов.

Помимо этого, в перспективе ожидается увеличение цены на мазут, т. к. она напрямую зависит от стоимости сырой нефти.

Виды мазута

На сегодняшний день известны и широко применяются технологии получения следующих видов мазута:

  • М-40, М-100;
  • флотский Ф-5 и Ф-12;
  • прямогонный;
  • топочный;
  • котельный;
  • технологический;
  • мазут-Т;
  • негостированный.

Как правило, они применяются в котельных, различных установках и для транспортных средств.

Самым широко используемым видом мазута является топочный. Он образуется уже после первичной обработки нефти. Остальные виды вырабатываются в гораздо меньших количествах. Это обусловлено переходом на другое, более экологичное топливо.

Переработка

Масляная жидкость, полученная после первичной или вторичной перегонки нефти, используется в чистом виде как топочное масло или отправляется на установку для дальнейшего разделения его на составляющие (фракции).

Переработка мазута осуществляется вакуумным методом. Его суть состоит в следующем: в установке сырье нагревается до 430 °С. Под воздействием высоких температур начинается испарение тяжелых углеводородов. Установка по переработке мазута представляет собой ректификационную колонну. Это своеобразный сосуд, предназначенный для разделения жидкостей на отдельные фракции.

По завершению процесса крекинга в верхней части колонны образуется соляровый дистиллят, ниже – составляющие, которые служат основой для производства различных товарных масел. Для переработки мазута в топливо данные масляные фракции подвергаются дальнейшей очистке. На завершающем этапе они повторно разделяются на составляющие. Затем фракции дополнительно очищаются и в каждую часть добавляются различные примеси. В результате этого получаются масла, готовые к реализации конечному потребителю.

В самой нижней части ректификационной колонны скапливается остаток нефтепродукта. Возможно 2 варианта дальнейших действий – запускается вторичная переработка мазута либо он используется для изготовления гудрона, который, в свою очередь, нужен для производства битума и остаточных масел. Эти вещества также необходимы. К примеру, битум является материалом, который широко применяется в бытовом и дорожном строительстве. Также на его основе производятся изоляционные материалы.

Таким образом, переработка мазута является практически безотходным процессом. Ведь всем его составляющим находится применение.

Продукты переработки, их применение

Основными продуктами переработки мазута являются:

  1. Котельное топливо. Самый массовый вид горючего, производимый для котельных, различных судовых установок и технологических печей. Образуется в результате первичной перегонки мазута. Критериями оценки качества служат: вязкость, содержание серы, коксуемость, температура застывания и сгорания, плотность, наличие воды и различных примесей.
  2. Моторное топливо. Является горючим для двигателей внутреннего сгорания. Отличается хорошими экологическими свойствами, небольшой химической активностью и отсутствием примесей. Последние влияют на уровень вредных отложений в двигателе.
  3. Дистиллятные и остаточные масла. Смазочные материалы, используемые, в основном, для уменьшения трения деталей различных механизмов и производства гидравлических жидкостей.
  4. Битум. Востребованный в бытовом и дорожном строительстве материал, обладающий множеством преимуществ. Отличительная особенность битума – сопротивляемость к возгоранию. Кроме того, он имеет высокую степень устойчивости к воздействию агрессивных веществ, воды и высоких температур. Характеристики битума могут совершенствоваться за счет добавления различных химических соединений.

В современном мире значение нефти очень велико. Продукты переработки уникального полезного ископаемого используются в крупнейших отраслях промышленности. Мазут – масляная жидкость, полученная в процессе перегонки нефти, сохранившая ее горючие свойства и отличающаяся низкой стоимостью. Вещество применяется в качестве топлива для котельных или подвергается дальнейшей переработке для производства различных масел и битума.

источник

Реферат: Вакуумная перегонка мазута. Технологическая схема типовой установки АВТ, получаемые продукты и их применение

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

уфимский государственный нефтяной

Кафедра технологий нефти и газа

Вакуумная перегонка мазута. Технологическая схема типовой установки АВТ, получаемые продукты и их применение.

Подготовка углеводородных газов к переработке.

Выполнил: ст.гр. ЭА4з-06-01

В.А. Геч

Проверил: преподаватель

А.Т. Гильмутдинов

2. Типы промышленных установок. 4

3. Блок атмосферной перегонки нефти установки ЭЛОУ – АВТ – 6. 6

4. Блок вакуумной перегонки мазута установки ЭЛОУ – АВТ – 6. 10

5. Блок стабилизации и вторичной перегонки бензина установки ЭЛОУ – АВТ – 6 ……………………………………………………………………………13

6. Особенности технологии вакуумной перегонки мазута по масляному варианту 16

7. Вакуумная (глубоковакуумная) перегонка мазута в насадочных колоннах. 17

8. Перекрестноточные посадочные колонны для четкого фракционирования мазута с получением масляных дистиллятов. 22

9. Конденсационно-вакуумсоздающие системы вакуумных колонн. 25

10. Фракционирование углеводородных газов нефтепереработки. 28

Список использованных источников. 36

Особенно велико современное экономическое значение нефти и газа. Нефть и газ – уникальные и исключительно полезные ископаемые. Продукты их переработки применяют практически во всех отраслях промышленности, на всех видах транспорта, в военном и гражданском строительстве, сельском хозяйстве, энергетике, в быту и т.д. За последние несколько десятилетий из нефти и газа стали вырабатывать в больших количествах разнообразные химические материалы, такие, как пластмассы, синтетические волокна, каучуки, лаки, краски, моющие средства, минеральные удобрения и многое другое. Не зря называют нефть «четным золотом», а XX век – веком нефти и газа. Нефть и газ определяют не только экономику и технический потенциал, но часто и политику государства.

1. Типы промышленных установок

Процессы перегонки нефти осуществляют на так называемых атмосферных трубчатых (AT) и вакуумных трубчатых (ВТ) или атмосферно- вакуумных трубчатых (АВТ) установках.

В зависимости от направления использования фракций установки перегонки нефти принято именовать топливными, масляными или топливно-масляными и соответственно этому — варианты переработки нефти.

На установках AT осуществляют неглубокую перегонку нефти с получением топливных (бензиновых, керосиновых, дизельных) фракции и мазута. Установки ВТ предназначены для перегонки мазута. Получаемые на них газойлевые. масляные фракции и гудрон используют в качестве сырья процессов последующей (вторичной) переработки их с получением топлив, смазочных масел, кокса, битумов и других нефтепродуктов.

Современные процессы перегонки нефти являются комбинированными с процессами обезвоживания и обессоливания, вторичной перегонки и стабилизации бензиновой фракции: ЭЛОУ — AT, ЭЛОУ -АВТ, ЭЛОУ-АВТ- вторичная перегонка и т.д.

Диапазон мощностей отечественных установок перегонки нефти широк — от 0,5 до 8 млн. т. нефти в год. До 1950 г. максимальная мощность наиболее распространенных установок AT и АВТ составляла 500-600 тыс.т/год. В 1950-60-х гг. проектировались и строились установки мощностью 1; 1,5; 2 и 3 млн. т/год нефти. В 1967 г. ввели в эксплуатацию высокопроизводительную установку АВТ мощностью 6 млн. т/год. Преимущества установок большой единичной мощности очевидны: высокая производительность труда и низкие капитальные и эксплуатационные затраты по сравнению с установками малой производительности.

Еще более существенные экономические преимущества достигаются при комбинировании AT и АВТ (или ЭЛОУ — AT и ЭЛОУ -АВТ) с другими технологическими процессами, такими, как газо-фракционирование, гидроочистка топливных и газойлевых фракций, каталитический риформинг, каталитический крекинг, очистка масляных фракций и т.д.

Надо отметить, что старые установки малой мощности подверглись модернизации с увеличением их мощности в 2 — 2,5 раза и более по сравнению с проектной.

Поскольку в эксплуатации находятся AT и АВТ довоенного и последующих поколений, отечественные установки перегонки нефти характеризуются большим разнообразием схем перегонки, широким ассортиментом получаемых фракций. Даже при одинаковой производительности ретификационые колонны имеют разные размеры, неодинаковое число и разные типы тарелок; по разному решены схемы теплообмена, холодного, горячего, и циркуляционного орошения а также вакуумсоздающей системы. В этой связи ниже будут представлены лишь принципиальные технологические схемы отдельных блоков (секций), входящих в состав высокопроизводительных современных типовых установок перегонки нефти.

2. Блок атмосферной перегонки нефти установки ЭЛОУ – АВТ – 6

При выборе технологической схемы и режима атмосферной перегонки нефти руководствуются главным образом ее фракционным составом и, прежде всего, содержанием в ней газов и бензиновых фракций.

Перегонку стабилизированных нефтей постоянного состава с небольшим количеством растворенных газов (до 1,2 % по С4 включительно), относительно невысоким содержанием бензина (12-15 %) и выходом фракций до 350°С не более 45 % энергетически наиболее выгодно осуществлять на установках (блоках) AT по схеме с однократным испарением, то есть с одной сложной ректификационной колонной с боковыми отпарными секциями. Установки такого типа широко применяются на зарубежных НПЗ. Они просты и компактны, благодаря осуществлению совместного испарения легких и тяжелых фракций требуют минимальной температуры нагрева нефти для обеспечения заданной доли отгона, характеризуются низкими энергетическими затратами и металлоемкостью. Основной их недостаток ─ меньшая технологическая гибкость и пониженный (на 2,5 -3,0 %) отбор светлых, по сравнению с двухколонной схемой, требуют более качественной подготовки нефти.

Для перегонки легких нефтей с высоким содержанием раствори­мых газов (1,5 — 2,2 %) и бензиновых фракций (до 20 — 30 %) и фракций до 350°С (50-60%) целесообразно применять атмосферную перегонку двухкратного испарения, то есть установки с предварительной отбензинивающей колонной и сложной ректификационной колонной с боковыми отпарными секциями для разделения частично отбензиненной нефти на топливные фракции и мазут. Двухколонные установки атмосферной перегонки нефти получили в отечественной нефтепереработке наибольшее распространение. Они обладают достаточной технологической гибкостью, универсальностью и способностью перерабатывать нефти различного фракционного состава, так как первая колонна, в которой отбирается 50 — 60 % бензина от потенциала, выполняет функции стабилизатора, сглаживает колебания в фракционном составе нефти и обеспечивает стабильную работу основной ректификационной колонны. Применение отбензинивающей колонны позволяет также снизить давление на сырьевом насосе, предохранить частично сложную колонну от коррозии, разгрузить печь от легких фракций, тем самым несколько уменьшить требуемую тепловую ее мощность.

Недостатками двухколонной AT является более высокая температура нагрева отбензиненной нефти, необходимость поддержания температуры низа первой колонны горячей струей, на что требуются затраты дополнительной энергии. Кроме того, установка оборудована дополнительной аппаратурой: колонной, насосами, конденсаторами-холодильниками и т.д.

Блок атмосферной перегонки нефти высокопроизводительной, наиболее распространенной в нашей стране установки ЭЛОУ — АВТ — 6 функционирует по схеме двухкратного испарения и двухкратной ректификации. Это показано на рисунке 1.

Обезвоженная и обессоленная на ЭЛОУ нефть дополнительно подогревается в теплообменниках и поступает на разделение в колонну частичного отбензинивания 1. Уходящие с верха этой колонны угле­водородный газ и легкий бензин конденсируются и охлаждаются в аппаратах воздушного и водяного охлаждения и поступают в емкость орошения. Часть конденсата возвращается наверх колонны 1 в ка­честве острого орошения. Отбензиненная нефть с низа колонны 1 подается в трубчатую печь 4, где нагревается до требуемой темпера­туры и поступает в атмосферную колонну 2. Часть отбензиненной нефти из печи 4 возвращается в низ колонны 1 в качестве горячей струи. С верха колонны 2 отбирается тяжелый бензин, а сбоку через отпарные колонны 3 выводятся топливные фракции 180-220 (230), 220 (230)-280 и 280-350°С. Атмосферная колонна, кроме острого оро­шения, имеет 2 циркуляционных орошения, которыми отводится теп­ло ниже тарелок отбора фракций 180-220 и 220-280°С. В нижние части атмосферной и отпарных колонн подается перегретый водя­ной пар для отпарки легко кипящих фракций. С низа атмосферной колонны выводится мазут, который направляется на блок вакуум­ной перегонки. Ниже приведены материальный баланс, технологи­ческий режим и характеристика ректификационных колонн блока атмосферной перегонки нефти (типа самотлорской)[1] .

Материальный баланс блока AT

Поступило, %

Получено, % на нефть

Газ и нестабильный бензин (н.к.-180 °С) — 19,1

Фракции: 180-220 °С — 7,4

Технологический режим работы блока AT

Колонна частичного отбензинивания нефти

Кратность острого орошения, кг/кг — 0,6:1

вывода фракций: 180-220 °С — 196

Кратность острого орошения, кг/кг 1,4:1

Характеристика ректификационных колонн

отбензинивания нефти, в т.ч.

концентрационная часть 12

Практикой эксплуатации промышленных установок AT и АВТ были выявлены следующие недостатки схемы 1:

— не обеспечиваются проектные показатели по температуре подогрева нефти на входе в К-1, тем самым и по отбору легкого бензина в ней;

— способ регулирования температуры низа К-1 посредством горячей струи через печь требует повышенных энергозатрат на циркуляцию отбензиненной нефти.

Для интенсификации работы К-1 на ряде НПЗ были переобвязаны теплообменники по сырью и теплоносителю с целью повышения температуры подогрева нефти на входе в К-1. На одном НПЗ[3] внедрена энергосберегающая технология отбензинивания нефти которая отличается от схемы 1 тем, что часть поступающей в К-1 исходной обессоленной нефти нагревается в конвекционной камере печи (атмосферной или вакуумной) до 180°С (вместо 205°С) и подается вторым потоком в секцию питания, а в низ К-1 в качестве испаряющего агента подается водяной пар (≈0,7% мас.).

3. Блок вакуумной перегонки мазута установки ЭЛОУ – АВТ – 6

Основное назначение установки (блока) вакуумной перегонки мазута топливного профиля — получение вакуумного газойля широкого фракционного состава (350 — 500 °С), используемого как сырье установок каталитического крекинга, гидрокрекинга или пиролиза и в некоторых случаях — термического крекинга с получением дистиллятного крекинг — остатка, направляемого далее на коксование с целью получения высококачественных нефтяных коксов.

О четкости разделения мазута обычно судят по фракционному составу и цвету вакуумного газойля. Последний показатель косвенно характеризует содержание смолисто-асфальтеновых веществ, то есть коксуемость и содержание металлов. Металлы, особенно никель и ванадий, оказывают отрицательное влияние на активность, селективность и срок службы катализаторов процессов гидрооблагораживания и каталитической переработки газойлей. Поэтому при эксплуатации промышленных установок ВТ исключительно важно уменьшить унос жидкости (гудрона) в концентрационную секцию вакуумной колонны в виде брызг, пены, тумана и т.д. В этой связи вакуумные колонны по топливному варианту имеют при небольшом числе тарелок (или невысоком слое насадки) развитую питательную секцию: отбойники из сеток и промывные тарелки, где организуется рециркуляция затемненного продукта. Для предотвращения попадания металлоорганических соединений в вакуумный газойль иногда вводят в сырье в небольших количествах антипенную присадку типа силоксан.

В процессах вакуумной перегонки, помимо проблемы уноса жид­кости усиленное внимание уделяется обеспечению благоприятных условий для максимального отбора целевого продукта без заметного его разложения. Многолетним опытом эксплуатации промышленных установок ВТ установлено, что нагрев мазута в печи выше 420-425°С вызывает интенсивное образование газов разложения, закоксовывание и прогар труб печи, осмоление вакуумного газойля. При этом, чем тяжелее нефть, тем более интенсивно идет газообразование и термодеструкция высокомолекулярных соединений сырья. Вследствие этого при нагреве мазута до максимально допустимой температуры уменьшают время его пребывания в печи, устраивая многопоточные змеевики (до четырех), применяют печи двустороннего облучения, в змеевик печи подают водяной пар и уменьшают длину трансферного трубопровода (между печью и вакуумной колонной). Для снижения температуры низа колонны организуют рецикл (квенчинг) частично охлажденного гудрона. С целью снижения давления на участке испарения печи концевые змеевики выполняют из труб большего диаметра и уменьшают перепад высоты между вводом мазута в колонну и выходом его из печи. В вакуумной колонне применяют ограниченное количество тарелок с низким гидравлическим сопротивлением или насадку; используют вакуумсоздающие системы, обеспечивающие достаточно глубокий вакуум. Количество тарелок в отгонной секции также должно быть ограничено, чтобы обеспечить малое время пребывания нагретого гудрона. С этой целью одновременно уменьшают диаметр куба колонн.

В процессах вакуумной перегонки мазута по топливному варианту преимущественно используют схему однократного испарения, применяя одну сложную ректификационную колонну с выводом дистиллятных фракций через отпарные колонны или без них. При использовании отпарных колонн по высоте основной вакуумной колонны организуют несколько циркуляционных орошений.

Принципиальная схема блока вакуумной перегонки мазута установки ЭЛОУ-АВТ-6 приведена на рисунке 2.

Мазут, отбираемый с низа атмосферной колонны блока AT (см. рис.1), прокачивается параллельными потоками через печь 2 в вакуумную колонну 1. Смесь нефтяных и водяных паров, газы разложения (и воздух, засасываемый через неплотности) с верха вакуумной колонны поступают в вакуумсоздающую систему. После кон и охлаждения в конденсаторе-холодильнике она разделяется в газосепараторе на газовую и жидкую фазы. Газы отсасыва­ются трехступенчатым пароэжекторным вакуумным насосом, а конденсаты поступают в отстойник для отделения нефтепродукта от водного конденсата. Верхним боковым погоном вакуумной колонны отбирают фракцию легкого вакуумного газойля (соляр). Часть его после охлаждения в теплообменниках воз­вращается наверх колонны в качестве верхнего циркуляционного орошения.

Вторым боковым погоном отбирают широкую газойлевую (масляную) фракцию. Часть ее после охлаждения используется как среднее циркуляционное орошение вакуумной колонны. Балансовое количество целевого продукта вакуумного газойля после теплообменников и холодильников выводится с установки и направляется на дальнейшую переработку.

С нижней тарелки концентрационной части колонны выводиться затемненная фракция, часть которой используется как нижнее циркуляционное орошение, часть — может выводиться с установки или использоваться как рецикл вместе с загрузкой вакуумной печи.

С низа вакуумной колонны отбирается гудрон и после охлаждения в теплообменнике возвращается в низ колонны в качестве квенчинга. В низ вакуумной колонны и змеевик печи подается водяной пар.

Материальный баланс блока вакуумной перегонки

Поступило, % на нефть

Получено. % на нефть

Легкий вакуумный газойль -1,2

Технологический режим в вакуумной колонне

легкого вакуумного газойля -195

широкого вакуумного газойля — 260

Давление наверху (абс), кПа — 8,0

Характеристика вакуумной колонны

4. Блок стабилизации и вторичной перегонки бензина установки ЭЛОУ – АВТ – 6

Во фракциях легкого и тяжелого бензинов, отбираемых с верха соответственно отбензинивающей и атмосферной колонн (см. рис. 1), содержатся растворенные углеводородные газы (С14 ). Поэтому прямогонные бензины должны подвергаться вначале стабилизации с выделением сухого (С12 ) и сжиженного (С24 ) газов и последующим их рациональным использованием.

Прямогонные бензины после предварительной стабилизации не могут быть использованы непосредственно как автомобильные бензины ввиду их низкой детонационной стойкости. Для регулирования пусковых свойств и упругости паров, товарных автобензинов обычно используется только головная фракция бензина н.к. — 62 (85°С), которая обладает к тому же достаточно высокой детонационной стойкостью.

Для последующей переработки стабилизированные бензины подвергаются вторичной перегонке на фракции, направляемые как сырье процессов каталитического риформинга с целью получения высокооктанового компонента автобензинов или индивидуальных ароматических углеводородов — бензола, толуола и ксилолов. При производстве ароматических углеводородов исходный бензин разделяют на следующие фракции с температурными пределами выкипания: 62 -85 °С (бензольную), 85-105 (120°С) (толуольную) и 105 (120)-140°С (ксилольную). При топливном направлении переработки прямогонные бензины достаточно разделить на 2 фракции: н.к.-85°С и 85-180°С.

Для стабилизации и вторичной перегонки прямогонных бензинов с получением сырья каталитического риформинга топливного направления применяют в основном двухколонные схемы, включающие колонну стабилизации и колонну вторичной перегонки бензина на фракции н.к. — 85 и 85 — 180°С. Как наиболее экономически выгодной схемой разделения стабилизированного бензина на узкие ароматикообразующие фракции признана последовательно-параллельная схема соединения колонн вторичной перегонки, как это при­нято в блоке стабилизации и вторичной перегонки установки ЭЛОУ-АВТ — 6 на рисунке 3. В соответствии с этой схемой прямогонный бензин после стабилизации разделяется сначала на 2 промежуточные фракции (н.к. — 105°С и 105-180°С), каждая из которых затем направляется на последующее разделение на узкие целевые фракции.

Как видно из рисунке 3, нестабильный бензин из блока AT после нагрева в теплообменнике поступает в колонну стабилизации (дебутанизатор) 1. С верха этой колонны отбирают сжиженные газы С24 , которые проходят конденсатор-холодильник и поступают в газосепаратор. Часть конденсата возвращается в колонну 1 в качестве острого орошения, а балансовое количество выводится с установки. Подвод тепла в низ дебутанизатора осуществляется горячей струей подогретого в печи стабильного бензина. Из стабильного (дебетированного) бензина в колонне 2 отбирают фракцию С5 -105°С. Пары этой фракции конденсируют в аппарате воздушного охлаждения. Часть конденсата возвращают в колонну 2 в качестве острого орошения, а балансовую часть направляют в колонну 3. Кроме того, часть паров верха колонны 2 подают без конденсации в колонну 3. С верха колонны 3 отбирают фракцию С5 — 62°С, с куба — 62-105 0 С. которая может выводиться с установки как целевая направляться в колонну 4 для разделения на фракции 62-85°С (бензольную) и 85-105°С (толуольную).

Остаток колонны 2 — фракцию 105-180°С -направляют на разделение в колонну 5 на фракции 105-140 °С и 140-180 °С.

Тепло в низ колонны 4 подводится через кипятильник, а остальных колонн вторичной перегонки (2,3 и 5) — с горячей струей подогретого в печи

кубового остатка этих колонн.

Материальный баланс блока стабилизации и вторичной перегонки бензина

Поступило, % на нефть

Технологический режим и характеристика ректификационных колонн блока стабилизации и вторичной перегонки бензина

питания 145 154 117 111 150

в емкости орошения 55 97 60 80 110

Кратность орошения, кг/кг 3,5:1 1,3:1 4:1 2,2:1 2,4:1

Давление, МПа 1,1 0,45 0,35 0,20 0,13

верхняя часть 2,8 3,6 3,6 2,8 4,0

Число тарелок[5] 40 60 60 60 60

Расходные показатели установки ЭЛОУ-АВТ-6 на 1 т перерабатываемой нефти: топливо жидкое — 33,4 кг; электроэнергия 10,4 кВт*ч; вода оборотная — 4,3 м 3 ; водяной пар (1,0 МПа) со стороны -1,1 кг, собственной выработки — 48 кг. Ниже, на рисунке 4, представлен общий вид установки ЭЛОУ-АВТ-6.

6. Особенности технологии вакуумной перегонки мазута по масляному варианту

Основное назначение процесса вакуумной перегонки мазута масляного профиля (ВТМ) – получение узких масляных фракций заданной вязкости, являющихся базовой основой для получения товарных масел путем последующей многоступенчатой очистки от нежелательных компонентов (смолистых, асфальтеновых соединений, полициклических ароматических углеводородов, твердых парафинов).

Многие показатели качества (вязкость, индекс вязкости, нагарообразующая способность, температура вспышки и др.) товарных масел, а также технико-экономические показатели процессов очистки масляного производства во многом предопределяются качеством исходных нефтей и их масляных фракций. Поэтому в процессах ВТМ, по сравнению с вакуумной перегонкой топливного профиля, предъявляются более строгие требования к четкости погоноразделения и выбору сырья. Наиболее массовым сырьем для производства масел в нашей стране являются смеси западно-сибирских (самотлорская, усть-балыкская, сосниская) и волго-уральских (туймазинская, ромашкинская, волгоградская) нефтей. Для получения масел высокого качества из таких нефтей рекомендуется получать узкие 50-градусные масляные фракции (350-400; 400-450 и 450-500°С) с минимальным налеганием температур кипения смежных дистиллятов (не более 30-60°С). Для обеспечения требуемой четкости погоноразделения на ректификационных колоннах ВТМ устанавливают большее число тарелок (до 8 на каждый дистиллят), применяют отпарные секции; наряду с одноколонными широко применяют двухколонные схемы (двухкратного испарения по дистилляту) перегонки (рисунок 5 (а, б)).

Следует отметить, что одноколонные ВТМ превосходят двухколонные по капитальным и эксплуатационным затратам, но уступают по четкости погоноразделения: обычно налегание температур кипения между смежными дистиллятами достигает 70-130°С. В то же время желаемое повышение четкости ректификации путем увеличения числа тарелок не достигается из-за снижения при этом глубины вакуума в секции питания колонны. При работе установки ВТМ по схеме рис. 5,а давление в секции питания колонны поддерживается порядка 13-33 кПа при давлении вверху 6-10 кПа и температуре нагрева мазута не выше 420 °С. В низ колонны подается 5-10 % водяного пара (на гудрон). При работе ВТМ по схеме рис. 5,б необязательно иметь во второй колонне глубокий вакуум, больший эффект разделения в ней достигается увеличением общего числа тарелок. Температура нагрева мазута на входе в первую колонну 400 -420°С и широкой масляной фракции во второй ступени вакуумной перегонки — 350-360 °С.

7. Вакуумная (глубоковакуумная) перегонка мазута в насадочных колоннах

В последние годы в мировой нефтепереработке все более широкое распространение при вакуумной перегонке мазута получают насадочные контактные устройства регулярного типа, обладающие, по сравнению с тарельчатыми, наиболее важным преимуществом  весьма низким гидравлическим сопротивлением на единицу теоре­тической тарелки. Это достоинство регулярных насадок позволяет конструировать вакуумные ректификационные колонны, способные обеспечить либо более глубокий отбор газойлевых (масляных) фракций с температурой конца кипения вплоть до 600°С, либо при заданной глубине отбора существенно повысить четкость фракционирования масляных дистиллятов.

Рис. 5. Схемы одноколонной (а) и двухколонной (б) перегонки мазута по масляному варианту: I — мазут; II, Ш и IV — соответственно маловязкий, средневязкий и высоковязкий дистилляты; V — гудрон; VI — водяной пар; VII — неконденсированные газы и водяной пар; VIII — легкий вакуумный газойль

Применяемые в настоящее время высокопроизводительные вакуумные колонны с регулярными насадками по способу организации относительного движения контактирующихся потоков жидкости и пара можно подразделить на следующие 2 типа: противоточные и перекрестноточные.

Противоточные вакуумные колонны с регулярными насадками конструктивно мало отличаются от традиционных малотоннажных насадочных колонн: только вместо насадок насыпного типа устанавливаются блоки или модули из регулярной насадки и устройства для обеспечения равномерного распределения жидкостного орошения по сечению колонны. В сложных колоннах число таких блоков (модулей) равно числу отбираемых фракций мазута.

На рисунке 6 представлена принципиальная конструкция вакуумной насадочной колонны противоточного типа фирмы Гримма (ФРГ). Она предназначена для глубоковакуумной перегонки мазута с отбором вакуумного газойля с температурой конца кипения до 550°С. Отмечаются следующие достоинства этого процесса:

— высокая производительность — до 4 млн. т/год по мазуту;

— возможность получения глубоковакуумного газойля с температурой конца кипения более 550°С с низкими коксуемостью (менее 0,3 % масс. по Конрадсону) и содержанием металлов (V+10Ni + Na) менее 2,5 ppm;

— пониженная (на 10-15 °С) температура нагрева мазута после печи;

— более чем в 2 раза снижение потери давления в колонне;

— существенное снижение расхода водяного пара на отпарку.

На Шведском НХК (ФРГ) эксплуатируются две установки этой фирмы производительностью по 2 млн. т/г по мазуту. Вакуумная колонна оборудована регулярной насадкой типа «Перформ-Грид». Давление вверху и зоне питания колонны поддерживается соответственно 7 и 36 гПа (5,2 и 27 мм рт. ст.).

На ряде НПЗ развитых капиталистических стран эксплуатируются аналогичные высокопроизводительные установки вакуумной (глубоковакуумной) перегонки мазута, оборудованные колоннами с регулярными насадками типа «Глитч-Грид».

На некоторых отечественных НПЗ внедрена и успешно функционирует принципиально новая высокоэффективная технология вакуумной перегонки мазута в перекрестноточных насадочных колоннах[6] .

Гидродинамические условия контакта паровой и жидкой фаз в перекрестноточных насадочных колоннах (ПНК) существенно отличаются от таковых при противотоке. В противоточных насадочных колоннах насадка занимает все поперечное сечение колонны, а пар и жидкость движутся навстречу друг другу. В ПНК насадка занимает только часть поперечного сечения колонны (в виде различных геометрических фигур: кольцо, треугольник, четырехугольник, многоугольник и т.д.). Перекрестноточная регулярная насадка изготавливается из традиционных для противоточных насадок материалов: плетеной или вязаной металлической сетки (так называемые рукавные насадки), просечно-вытяжных листов, пластин и т.д. Она проницаема для пара в горизонтальном направлении и для жидкости в вертикальном направлении. По высоте ПНК разделена распределительной плитой на несколько секций (модулей), представляющих собой единую совокупность элемента регулярной насадки с распределителем жидкостного орошения. В пределах каждого модуля организуется перекрестноточное (поперечное) контактирование фаз, то есть движение жидкости по насадке сверху вниз, а пара — в горизонтальном направлении. Следовательно, в ПНК жидкость и пары проходят различные независимые сечения, площади которых можно регулировать (что дает проектировщику дополнительную степень свободы), а при противо­токе — одно и то же сечение. Поэтому перекрестноточный контакт фаз позволяет регулировать в оптимальных пределах плотность жидкого и парового орошений изменением толщины и площади поперечного сечения насадочного слоя и тем самым обеспечить почти на порядок превышающую при противотоке скорость паров (в расчете на горизонтальное сечение) без повышения гидравлического сопротивления и значительно широкий диапазон устойчивой работы колонны при сохранении в целом по аппарату принципа и достоинств противотока фаз, а также устранить такие дефекты, как захлебывание, образование байпасных потоков, брызгоунос и другие, характерные для противоточных насадочных или тарельчатых колонн.

Экспериментально установлено, что перекрестноточный насадочный блок конструкции Уфимского государственного нефтяного университета (УГНТУ), выполненный из металлического сетчатовязаного рукава, высотой 0,5 м, эквивалентен одной теоретической тарелке и имеет гидравлическое сопротивление в пределах всего 1 мм рт. ст. (133,3 Па), то есть в 3-5 раз ниже по сравнению с клапанными тарелками. Это достоинство особенно важно тем, что позволяет обеспечить в зоне питания вакуумной ПНК при ее оборудовании насадочным слоем, эквивалентным 10-15 тарелкам, остаточное давление менее 20-30 мм рт. ст. (27-40 ГПа) и, как следствие, значительно углубить отбор вакуумного газойля и тем самым существенно расширить ресурсы сырья для каталитического крекинга или гидрокрекинга. Так, расчеты показывают, что при глубоковакуумной перегонке нефтей типа западно-сибирских выход утяжеленного вакуумного газойля 350-690°С составит 34,1 % на нефть), что в 1,5 раза больше по сравнению с отбором традиционного вакуумного газойля 350-500°С (выход которого составляет 24,2 %) С другой стороны, процесс в насадочных колоннах можно осуществить в режиме обычной вакуумной перегонки, но с высокой четкостью погоноразделения, например, масляных дистиллятов. Низкое гидравлическое сопротивление регулярных насадок позволяет «вместить» в вакуумную колонну стандартных типоразмеров в 3-5 раза большее число теоретических тарелок. Возможен и такой вариант эксплуатации глубоковакуумной насадочной колонны, когда перегонка мазута осуществляется с пониженной температурой нагрева или без подачи водяного пара.

Отмеченное выше другое преимущество ПНК — возможность организации высокоплотного жидкостного орошения — исключительно важно для эксплуатации высокопроизводительных установок вакуумной или глубоковакуумной перегонки мазута, оборудованных колонной большого диаметра. Для сравнения сопоставим потребное количество жидкостного орошения применительно к вакуумным колоннам противоточного и перекрестноточного типов диаметром 8 м (площадью сечения ≈50 м 2 ). При противотоке для обеспечения даже пониженной плотности орошения ≈20 м 3 /м 2 ч требуется на орошение колонны 50×20=1000 м 3 /ч жидкости, что технически не просто осуществить. При этом весьма сложной проблемой становится организация равномерного распределения такого количества орошения по сечению колонны.

В ПНК, в отличие от противоточных колонн, насадочный слой занимает только часть ее горизонтального сечения площадью на порядок и более меньшую. В этом случае для организации жидкостного орошения в вакуумной ПНК аналогичного сечения потребуется 250 м 3 /ч жидкости, даже при плотности орошения 50 м3/м 2 ч, что энергетически выгоднее и технически проще. На рисунке 7 представлена принципиальная конструкция вакуумной перекрестноточной насадочной колонны, внедренной на АВТ-4 ПО «Салаватнефтеоргсинтез». Она предназначена для вакуумной перегонки мазута арланской нефти с отбором широкого вакуумного газойля — сырья каталитического крекинга. Она представляет собой цилиндрический вертикальный аппарат (ранее бездействующая вакуумная колонна) с расположением насадочных модулей внутри колонны по квадрату. Диаметр колонны 8 м, высота укрепляющей части около 16 м. В колонне смонтирован телескопический ввод сырья, улита, отбойник и шесть модулей из регулярной насадки УГНТУ. Четыре верхних модуля предназначены для конденсации вакуумного газойля, пятый является фракционирующим, а шестой служит для фильтрации и промывки паров. Для снижения крекинга в нижнюю часть колонны вводится охлажденный до 320°С и ниже гудрон в виде квенчинга. Поскольку паровые и жидкостные нагрузки в ПНК различны по высоте, насадочные модули выполнены различными по высоте и ширине в соответствии с допустимыми нагрузками по пару и жидкости. Предусмотрены циркуляционное орошение, рецикл затемненного продукта, надежные меры против засорения сетчатых блоков механическими примесями, против вибрации сетки и проскока брызгоуноса в вакуумный газойль.

Давление в зоне питания колонны составило 20-30 мм рт. ст. (27-40 ГПа), а температура верха — 50-70 °С; конденсация вакуумного газойля была почти полной: суточное количество конденсата легкой фракции (180-290 °С) в емкости — отделителе воды — составило менее 1 т. В зависимости от требуемой глубины переработки мазута ПНК может работать как с нагревом его в вакуумной печи, так и без нагрева за счет самоиспарения сырья в глубоком вакууме, а также в режиме сухой перегонки. Отбор вакуумного газойля ограничивался из-за высокой вязкости арланского гудрона и составлял 10-18 % на нефть.

8. Перекрестноточные посадочные колонны для четкого фракционирования мазута с получением масляных дистиллятов

Перекрестноточные насадочные колонны (ПНК) в зависимости от количества устанавливаемых в них насадочных блоков и, следовательно, от достигаемого в зоне питания глубины вакуума можно использовать в следующих вариантах:

а) вариант глубоковакуумной перегонки с углубленным отбором, но менее четким фракционированием вакуумных дистиллятов, если ПНК оборудованы ограниченным числом теоретических ступеней контакта;

б) вариант обычной вакуумной перегонки, но с более высокой четкостью фракционирования отбираемых дистиллятов, когда ПНК оборудована большим числом теоретических ступеней контакта.

Второй вариант особенно эффективен для фракционирования мазута с получением масляных дистиллятов с более узким темпера­турным интервалом выкипания за счет снижения налегания темпе­ратур кипения смежных фракций.

На одном из НПЗ России («Орскнефтеоргсинтез») проведена реконструкция вакуумного блока установки АВТМ, где ранее отбор масляных дистиллятов осуществлялся по типовой двухколонной схеме с двухкратным испарением по дистилляту (см. рис. 5,б) с переводом ее на одноколонный вариант четкого фракционирования мазута в ПНК. Принципиальная конструкция этой колонны представлена на рисунке 8.

При реконструкции вакуумной колонны было смонтировано 20 перекрестноточных насадочных блоков (из просечно-вытяжного листа конструкции УГНТУ с малым гидравлическим сопротивлением), в т.ч. 17 из которых — в укрепляющей части, что эквивалентно 10.8 теоретическим тарелкам (вместо 5,6 до реконструкции).

При эксплуатации реконструированной установки АВТМ были получены следующие результаты по работе ПНК и качеству продуктов разделения:

источник

Название: Вакуумная перегонка мазута. Технологическая схема типовой установки АВТ, получаемые продукты и их применение
Раздел: Промышленность, производство
Тип: реферат Добавлен 14:56:46 08 июля 2008 Похожие работы
Просмотров: 9954 Комментариев: 8 Оценило: 4 человек Средний балл: 3.8 Оценка: неизвестно Скачать