Меню Рубрики

Установки для выращивания монокристаллического кремния

Установки для выращивания монокристаллов

Установки для выращивания монокристаллов.

Описание:

Установки для выращивания монокристаллов представлены целой серией установок .

Установки для выращивания монокристаллов предназначены для выращивания таких монокристаллов как теллурид кадмия, арсенид индия и галия, антимонид индия, германия, кремния, сапфир , алюмоиттриевый гранат, танталат лития, ниобат лития, молибдат гадолиния, лангасит, ванадаты редкоземельных металлов, силикат и германат висмута и многих других.

Установка для выращивания монокристаллов соединений на основе теллурида кадмия методом движущегося нагревателя:

Кристаллы соединений на основе теллурида кадмия выращиваются в специально изготовленной герметичной ампуле, содержащей исходные материалы. Ампула устанавливается на шток механизма перемещения, который позволяет перемещать ампулу вертикально вверх/вниз на рабочей и ускоренной скоростях вдоль оси теплового узла. В процессе роста ампула не видна. Вся информация о ходе процесса приходит от датчиков. Время одного процесса около 300 часов.

Метод движущегося нагревателя заключается в том, что в ростовую ампулу загружают затравочный кристалл , на него помещают слиток, при расплавлении которого формируется жидкая зона раствора-расплава на основе теллура, в верхней части помещается поликристаллическая заготовка теллурида кадмия. При перемещении ампулы вниз происходит растворение поликристаллической заготовки, диффузия растворенного соединения через жидкую зону раствора-расплава и кристаллизация соединения на затравочном кристалле.

Технические характеристики установки для выращивания монокристаллов соединений на основе теллурида кадмия:

Тепловой узел размещен внутри герметичной камеры
Тепловой узел включает 3 тепловые зоны и обеспечивает возможность выращивания кристаллов диаметром до 80 мм
Температура средней (основной) тепловой зоны, в интервале °С 700…950
Температура нижней и верхней подпорных тепловых зон, в интервале °С 200…400
Число регулируемых зон нагрева (всего / резервных) 4 / 1
Температурный профиль нагревателя обеспечивает градиент температуры в интервале 30…50 град/см в области затравочного кристалла
Нестабильность температуры по оси температурного профиля, °С 0.5
Пульт управления выполнен с использованием программируемых микроконтроллеров для управления 4-мя зонами нагревателя и возможностью подключения к персональному или промышленному компьютеру
Перемещение штока по вертикали:
рабочая скорость, мм сут-1 5…25
маршевая скорость, мм мин-1 0,115…115
величина хода, мм 350
Частота вращения штока, об мин-1 1…60
Нестабильность вращения валов эл. дв., не более % 0,5
Допустимое биение ампулы при вращении – не более 5 мм в радиальном направлении
Возможность откачки рабочего объема (форвакуум) и напуска инертного газа (аргон)
Установочная мощность тепловых зон, Вт 1000
Общая мощность, кВт 4
Максимальный ток зоны нагрева, А 100
Индицируемые параметры:
сигналы датчиков температуры зон
скорость перемещения штока
положение штока
частота вращения штока
Габаритные размеры, мм (не более)
Печной агрегат:
высота 2565
ширина 1000
глубина 850
Масса, кг (не более)
Печной агрегат 1000
Стойка управления 300
Напряжение питающей сети, В 380/220
Частота питающей сети, Гц 50
Расход охлаждающей воды, м3 \час 2,0

Установка для выращивания монокристаллов арсенида индия и галлия:

Установка предназначена для выращивания монокристаллов арсенидов индия InAs и галлия GaAs под давлением инертного газа с последующим отжигом выращенного кристалла.

Технические характеристики установки для выращивания монокристаллов арсенида индия и галлия:

Максимальные размеры тигля, мм:
диаметр 230
высота 200
Способ нагрева резистивный
Материал нагревателя графит
Высота нагревателя, мм 400
Максимальная температура, ˚С на нагревателе 1400
Точность регулирования температуры, ˚С 0,1
Среда в камере печи
предельный вакуум, мм.рт.ст. 1*10-4
избыточное давление инертного газа, атм. 10-20
Устройство перемещения верхнего штока:
Скорость вращения привода верхнего штока, об/мин 0-30
Скорость перемещения привода верхнего штока, рабочая, мм/мин 0-0,5
Скорость ускоренного перемещения привода верхнего штока, мм/мин 100
Ход штока затравки, мм 600
Устройство перемещения тигля:
Величина перемещения тигля, мм 200
Скорость вращения привода тигля, об/мин 0-20
Скорость перемещения привода нижнего штока, рабочая, мм/мин 0-0,5
Скорость ускоренного перемещения привода нижнего штока, мм/мин 70
Тепловой узел установки:
Верхняя зона:
Температура нагревателя верхней зоны, ˚С 1200
Потребляемая мощность нагревателем верхней зоны, кВт 20
Точность поддержания температуры ±0,1
Средняя Зона:
Температура на нагревателе, ˚С 1400
Потребляемая мощность, не более, кВт 60
Точность поддержания температуры ±0,1
Нижняя зона:
Температура на нагревателе, ˚С 1200
Потребляемая мощность, не более, кВт 20
Точность поддержания температуры ±0,1
Читайте также:  Установки по утилизации нефтепродукт

Установка для выращивания монокристаллов антимонида индия:

Установка предназначена для плавления , синтезирования и выращивания монокристаллов антимонидов индия InSb с последующим отжигом выращенного кристалла.

Технические характеристики установки для выращивания монокристаллов антимонида индия:

Максимальные размеры тигля, мм: – диаметр 135
высота 70
Способ нагрева резистивный
Материал нагревателя графит
Высота нагревателя, мм 180
Максимальная температура, ˚С на нагревателе 1200
Точность регулирования температуры, ˚С 0,1
Среда в камере печи:- предельный вакуум, мм.рт.ст. 1*10-5
проток инертного или горячего газа, л/час 1-100
Скорость вращения привода верхнего штока, об/мин 0-50
Скорость перемещения привода верхнего штока, рабочая, мм/ч 0-50
Скорость перемещения привода верхнего штока, маршевая, мм/мин 200
Привод перемещения тигля:
Величина перемещения привода тигля, мм 200
Скорость вращения привода тигля, об/мин 0-20
Электропитание:
– нагреватель однофазный
частота, гц 50

Малогабаритная установка выращивания монокристаллов:

Малогабаритная установка предназначена для выращивания монокристаллов германия, кремния, антимонидов галлия и индия в автоматическом режиме (кроме затравления) из тигля Ø102х100 мм и для проведения исследовательских работ.

Технические характеристики установки для выращивания монокристаллов германия, кремния и пр.:

Максимальные размеры тигля:
диаметр, мм 102
высота, мм 100
Способ нагрева резистивный
Материал нагревателя графит
Предельная температура, °С 1650
Точность регулирования температуры,°С ± 5
Среда в камере печи – вакуум ( в чистой сухой камере), мм.рт.ст 5х10 -5
Скорость перемещения верхнего штока, мм/мин:
рабочая 0,1-8
маршевая 150
Величина перемещения верхнего штока, мм 400
Частота вращения верхнего штока, об/мин 1-30
Электропитание:
нагреватель однофазный
частота, Гц 50
Расход охлаждающей воды, м 3 /час 1
Давление воды, МПа 0,3

Автоматизированная установка для выращивания монокристаллов сапфира, алюмоиттриевого граната, танталата лития и пр. способом Чохральского:

Многофункциональная установка НИКА-3 предназначена для выращивания широкой гаммы тугоплавких оксидных монокристаллов способом Чохральского, таких как сапфир, алюмоиттриевый гранат, танталат лития, ниобат лития, молибдат гадолиния, лангасит, ванадаты редкоземельных металлов, силикат и германат висмута и многих других.

Технические характеристики установки для выращивания монокристаллов сапфира, алюмоиттриевого граната, танталата лития и пр.:

Температура плавления до 2100 О С
Диаметр тигля для расплава до 150 мм (в зависимости от типа выращиваемого кристалла)
Масса выращиваемого кристалла до 4 кг; 8 кг
Диапазон измерения датчика веса до 5 кг; 10кг
Чувствительность датчика веса не менее 0,02 г; 0,04 г
Рабочий ход верхнего штока 550 мм
Скорость перемещения верхнего штока:
рабочая от 0,1 до 120,0 мм/ч
ускоренная от 0,5 до 150,0 мм/мин
Скорость вращения верхнего штока 1-100 об/мин
Рабочий ход нижнего штока 200 мм
Тип преобразователя транзисторный (IGBT технология)
Выходная мощность преобразователя 40 кВт; 100 кВт
Диапазон использования выходной мощности преобразователя частоты от 1 до 100 % от используемой
Коэффициент полезного действия не ниже 93%
Допустимое отклонение выходной мощности преобразователя частоты от установленной ± 0,05%
Давление инертного газа в камере не более 1,5х10 5 Па
Предельный форвакуум в ростовой камере при выключенном индукторе не более 2,6 Па
Потребляемая мощность установки (без преобразователя частоты) не более 3 кВт
Давление охлаждающей воды от 200 кПа до 250 кПа

выращивание монокристаллов
методы выращивание монокристаллов
установка выращивания монокристаллов
установка выращивания кристаллов
выращивание монокристаллов кремния
выращивание монокристаллов в домашних условиях
ростовые установки для выращивания монокристаллов
ищу работу по выращиванию монокристаллов
методы выращивания объемных монокристаллов
метод чохральского выращивание монокристаллов
выращивание монокристаллов по чохральскому
оборудование выращивания монокристалл сапфир цена
гексагональный диоксид германия выращивание монокристаллов
метод вернейля выращивание монокристаллов
ростовые установки для выращивания монокристаллов методом vgf
установка для выращивания монокристаллов йодистого цезия
земсков виктор сергеевич выращивание монокристаллов в невесомости

Читайте также:  Установка centos raid lvm

источник

Установка для выращивания монокристаллического кремния

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное
учреждение высшего образования

«Санкт-Петербургский национальный исследовательский
университет информационных технологий, механики и оптики»

Мегафакультет: Компьютерных технологий и Управления

Факультет: Безопасных информационных технологий

Направление (специальность) 11.03.03 «Конструирование и технология электронных средств»

Профиль «Конструирование и технология электронных средств»

«Физико-химические основы технологии электронных средств»

Количество баллов: ____________

Дата защиты: «___» _____________2018г.

2. Получение поликристаллического кремния. 4

2.1 Получение технического кремния. 4

2.3 Установка для выращивания монокристаллического кремния. 6

Как и десятки лет назад, сегодня полупроводниковый кремний является материалом «номер один» твёрдотельной электроники. В развитие кремниевой индустрии за эти годы вложены колоссальные средства и полученные при этом результаты весьма впечатляющи. Сегодня монокристаллический кремний – это самый совершенный кристаллический материал из огромного многообразия материалов, созданных когда-либо человеком или природой. Ежегодно в мире производится

9 тыс. тонн высокосовершенных монокристаллов. Основным потребителем этой уникальной продукции является микроэлектроника, на долю которой приходится

80% мирового производства монокристаллов. Развитие микроэлектроники оказывает решающее влияние на мировой научно-технический прогресс. Оно во многом определяет решение проблем глобальной компьютеризации и информатизации, создания новейших систем связи и телевидения, разнообразной бытовой, медицинской и специальной электронной аппаратуры.

В мире сегодня полупроводниковый кремний для микроэлектроники производят менее десятка фирм – в США (18 тыс. тонн), Японии (9,5 тыс. тонн), Германии (8 тыс. тонн), Италии (5 тыс. тонн), и в Китае (для нужд собственного рынка). В России, чтобы закрыть потребность этого элемента в промышленности, нужно производить около 200 тонн поликремния. В Советском Союзе поликристаллический кремний производился с 1957 года на шести предприятиях. В 90-е годы на предприятиях бывшего СССР выпускалось около 1150 тонн кремния в год. После ликвидации в 2003 году производства поликремния на Подольском химико-металлургическом заводе в России больше не осталось действующих производств.

Получение поликристаллического кремния

Получение технического кремния

Современная технология поликристаллического кремния основана на процессе водородного восстановления трихлорсилана, восстановления тетрахлорида кремния цинком и пиролиза моносилана (Рис. 1) .

Исходным сырьем для большинства изделий микроэлектронной промышленности служит электронный кремний. Первым этапом его получения является изготовление сырья, называемого техническим (металлургическим) кремнием. Рис. 1 Процесс получения монокремния

Этот технологический этап реализуется с помощью дуговой печи с погруженным в нее электродом (Рис. 2).Печь загружается кварцитом SiO2 и углеродом в виде угля, щепок и кокса. Температура реакции Т = 1800 0С, энергоемкость W = 13 кВт/час.

В печи происходит ряд промежуточных реакций. Рис.2 Дуговая печь

Результирующая реакция может быть представлена в виде:

SiC(тв) + SiO2 (тв)→ Si(тв) + SiO2 (газ) + CO(газ)

Получаемый таким образом технический кремний содержит 98 –99% Si, 1 –2% Fe, Аu, В, Р, Са, Cr, Cu, Mg, Mn, Ni, Ti, V, Zn и др.

Для производства процессоров требуется гораздо более чистое сырье, называемое «электронным кремнием» — в таком должно быть не более одного чужеродного атома на миллиард атомов кремния. Для очистки до такого уровня, кремний буквально «рождается заново». Путем хлорирования технического кремния получают тетрахлорид кремния (SiCl4), который в дальнейшем преобразуется в трихлорсилан (SiHCl3):

Данные реакции с использованием рецикла образующихся побочных кремнийсодержащих веществ снижают себестоимость и устраняют экологические проблемы:

Далее производство монокристаллов кремния в основном осуществляют методом Чохральского (до 80–90% потребляемого электронной промышленностью) и в меньшей степени методом бестигельной зонной плавки.

Читайте также:  Установка антенны для усиления сигнала интернета

Метод Чохральского

Идея метода получения кристаллов по Чохральскому заключается в росте монокристалла за счет перехода атомов из жидкой или газообразной фазы вещества в твердую фазу на их границе раздела

Установка для выращивания монокристаллического кремния

Установка (Рис. 3) состоит из следующих блоков

· печь, включающая в себя тигель (8), контейнер для поддержки тигля (14), нагреватель (15), источник питания (12), камеру высокотемпературной зоны (6) и изоляцию (3, 16);

· механизм вытягивания кристалла, включающий в себя стержень с затравкой (5), механизм вращения затравки (1) и устройство ее зажима, устройство вращения и подъема тигля (11);

· устройство для управления составом атмосферы (4 – газовый вход, 9 – выхлоп, 10 – вакуумный насос);

· блок управления, состоящий из микропроцессора, датчиков температуры и диаметра растущего слитка (13, 19) и устройств ввода;

¾ дополнительные устройства: смотровое окно – 17, кожух – 2.

Рис. 3 Установка по выращиванию методом Чохральского

Технология процесса

Затравочный монокристалл высокого качества опускается в расплав кремния и одновременно вращается (Рис. 4). Получение расплавленного поликремния происходит в тигле в инертной атмосфере (аргона при разрежении

104 Па.) при температуре, незначительно превосходящей точку плавления кремния Т = 1415°С. Тигель вращается в направлении противоположном вращению монокристалла для осуществления перемешивания расплава и сведению к минимуму неоднородности распределения температуры. Выращивание при разрежении позволяет частично очистить расплав кремния от летучих примесей за счет их испарения, а также снизить образование на внутренней облицовке печи налета порошка монооксида кремния, попадание которого в расплав приводит к образованию дефектов в кристалле и может нарушить монокристаллический рост.

Рис. 4 Процесс роста монокристалла

В начале процесса роста монокристалла часть затравочного монокристалла расплавляется для устранения в нем участков с повышенной плотностью механических напряжений и дефектами. Затем происходит постепенное вытягивание монокристалла из расплава.

Для получения монокристаллов кремния методом Чохральского разработано и широко используется высокопроизводительное автоматизированное оборудование, обеспечивающее воспроизводимое получение монокристаллов диаметром до 200 – 300 мм. С увеличением загрузки и диаметра кристаллов стоимость их получения уменьшается. Однако в расплавах большой массы (60–120 кг) характер конвективных потоков усложняется, что создает дополнительные трудности для обеспечения требуемых свойств материала. Кроме того, при больших массах расплава снижение стоимости становится незначительным за счет высокой стоимости кварцевого тигля и уменьшения скорости выращивания кристаллов из-за трудностей отвода скрытой теплоты кристаллизации. В связи с этим с целью дальнейшего повышения производительности процесса и для уменьшения объема расплава, из которого производится выращивание кристаллов, интенсивное развитие получили установки полунепрерывного выращивания. В таких установках производится дополнительная непрерывная или периодическая загрузка кремния в тигель без охлаждения печи, например путем подпитки расплава жидкой фазой из другого тигля, который, в свою очередь, также может периодически или непрерывно подпитываться твердой фазой. Такое усовершенствование метода Чохральского позволяет снизить стоимость выращиваемых кристаллов на десятки процентов. Кроме того, при этом можно проводить выращивание из расплавов небольшого и постоянного объема. Это облегчает регулирование и оптимизацию конвективных потоков в расплаве и устраняет сегрегационные неоднородности кристалла, обусловленные изменением объема расплава в процессе его роста.

Подводя итоги можно отметить, что в приведенной работе был рассмотрен мировой рынок и российский рынок полупроводникового кремния. Описаны отрасли потребления и оборудование, цикл получения монокристаллического кремния.

Список литературы

1. Кремний // Портал: Habr– [Электронный ресурс]. https://m.habr.com/company/intel/blog/110234/

2. Кремний, его свойства и применение в современной электронике // Портал: allbest– [Электронный ресурс]. https://revolution.allbest.ru/chemistry/00344866_0.html

3. Получение поликристаллического кремния. // Портал: allbest– [Электронный ресурс]. https://knowledge.allbest.ru/physics/3c0b65635a3bd78b4d53b88421306c37_0.html

4. Метод Чохральского // Портал: Википедия– [Электронный ресурс]. https://ru.wikipedia.org/wiki/Метод_Чохральского

Дата добавления: 2018-11-24 ; просмотров: 171 ;

источник