Меню Рубрики

Установки электролизная с платиновыми электродами

Применение прямоходных механизмов, электроприводов в электролизных установках, электролизерах различных типов. Механизмы для электролизеров.

Электролиз — это расщипление или очищение веществ под воздействием электрического тока. Это окислительно-восстановительный процесс, на одном из электродов — аноде — происходит процесс окисления — он разрушается, а на катоде — процесс восстановления — к нему притягиваются положительные ионы — катионы. При электролизе проходит электролитическая диссоциация — распад электролита (токопроводящего вещества) на положительно и отрицательно заряженные ионы (выделяют несколько степеней диссоциации).При включении тока происходит движение электронов от анода к катоду, при этом раствор электролита может обедняться (если он учавствует в процессе), его нужно постоянно пополнять. Окисляющийся анод может также растворяться в растворе электролита — тогда его частицы приобретают положительный заряд и притягиваются к катоду.

Анод — положительно заряженный электрод — на нем идет окисление
Катод — отрицательно заряженный электрод — на нем идет восстановление
Исходя из принципа, что разноименые заряды притягиваются, вместе с этим идет разделение или очищение вещества.

Материал электродов может быть различным, в зависимости от проиходящего процесса. Масса вещества которое получается при электрохимическом взаимодействии, определяется законами Фарадея и зависит от заряда (произведение силы тока на время протекания тока), также зависит от концентрации электролита от активности материалов, из которых сделаны электроды. Аноды бывают инертные — нерастворимые, не вступают в реакции и активные — сами участвуют во взаимодействии (применяются гораздо реже).

Для изготовления анодов применяют графит, углеграфитовые материалы, платину и ее сплавы, свинец и его сплавы, окислы некоторых металлов; используются титановые аноды с активным покрытием из смеси окислов рутения и титана, а также платины и её сплавов.

Нерастворимые аноды — это композиции на основе тантала и титана специальные сорта графита, двуокись свинца, магнетит. Для катодов обычно используется сталь.

Для процесса могут быть использованы следующие типы электролитов: водные растворы солей, кислот, оснований; неводные растворы в органических и неорганических растворителях; расплавленные соли; твердые электролиты. Электролиты бывают различной степени концентрации.

В зависимости от целей электролитических реакций, используют различные сочетания типов анодов и катодов: горизонтальные с жидким ртутным катодом, с вертикальными катодами и фильтруюшей диафрагмой, с горизонтальной диафрагмой, с проточным электролитом, с движущимися электродами, с насыпными электродами и т.д. В большинстве процессов стремятся использовать вещества образующиеся и на аноде, и на катоде, однако обычно один из продуктов менее ценен.

Электролиз находит огромное применение в промышленности, также он используется в медицине и народном хозяйстве.

Основные применения электролиза:

  • Чистка воды для использования в народном хозяйстве,
  • Очистка сточных вод использованных вод с химических производств.

Для получения веществ и металлов без примесей:

  • Металлургия, гидрометаллургия — для производства алюминия и многих других металлов — алюминия из расплава оксида алюминия в криолите, электролизом получают магний (из доломита и морской воды), натрий (из каменной соли), литий, бериллий, кальций (из хлорида кальция), щелочные и редкоземельных металлы.
  • В химической промышленности электролизом получают такие важные продукты как хлораты и перхлораты, надсерную кислоту и персульфаты, перманганат калия,
  • Электролитическое выделение металла — электроэкстракция. Руда или концентрат определенными реагентами переводится в раствор, который после очистки направляют на электролиз. Так получают цинк, медь, кадмий.
  • Электролитическое рафинирование. Из металла изготавливают растворимые аноды, примеси, содержащиеся в черновом металле анода выпадают в виде анодного шлама (медь, никель, олово, свинец, серебро, золото), при электролизе, а чистый металл выделяется на катоде.
  • В гальванотехники — гальваностегия — получение покрытий но металлах, улучшающие их эксплуатационные или декоративные свойства и гальванопластика — получение точных металлических копий любых предметов;
  • Для получения оксидных защитных пленок на металлах (анодирование); также электрохимическая обработка используется для полировки поверхности изделий и окрашивания металлов,
  • Существует электрохимическая заточка режущих инструментов, электрополирование, электрофрезирование,
  • также электролиз широко применяется в радиотехнике.

Выделяют электролиз водных растворов и расплавленных сред, а также производство самих электрохимических источников тока — батарей, гальванических элементов, аккумуляторов работоспособность которых восстанавливается пропусканием тока в направлении, противоположном тому, в котором ток протекал при разрядке.

Основные типы электролизных установок:

  • Установки для получения и рафинирования алюминия;
  • Электролизные установки ферросправного производства;
  • Электролизеры никель-кобальтового производства;
  • Установки для электролиза магния;
  • Установки электролиза (рафинирования) меди;
  • Установки для нанесения гальванических покрытий;
  • Электролизные установки получения хлора;
  • Электролизеры для обеззараживания воды.
  • Электролизеры, производящие водород для атомных станций .. и т.п.

Побочным продуктов многих окислительно-восстановительных реакций является кислород.

При электролизе регулируют силу тока, его частоту и напряжение, даже полярность, эти параметры управляют скоростью и направленностью процессов. Реакция электролиза всегда проводится при постоянном токе, так как здесь очень важно постояноство полюсов. В очень редких случаях, когда полярность не значима используется переменный ток (например, при электролизе газов).

Читайте также:  Установка зажигания мотоцикл сова

Современные алюминиевые электролизеры по конструкции катодного устройства подразделяют на

  • Электролизеры с днищем и без днища,
  • С набивной и блочной подиной;
  • по способу токоподвода: с односторонней и двусторонней схемой ошиновки;
  • по способу улавливания газов: на электролизеры открытого типа, с колокольным газоотсосом и укрытого типа.

К неудовлетворительным свойствам всех существующих конструкций алюминиевых электролизеров следует отнести недостаточно высокий коэффициент использования электроэнергии, непродолжительный срок их службы и недостаточную эффективность улавливания отходящих газов. Дальнейшее совершенствование конструкции электролизеров должно идти по пути увеличения его единичной мощности, механизации и автоматизации всех операций обслуживания, полного улавливания всех отходящих газов с последующей регенерацией их ценных компонентов.

Промышленные электролизные установки имеют множество типов конструкции, основные это мембранные и диафрагменные. Также выделяют сухие, мокрые и проточные электролизные установки. В общем виде установка — это закрытая система, содержащая электроды, помещенные в состав электролита, к которой подводится электрический ток с определенными характеристиками. Электролизные ячейки могут быть объединены в батарею. Существуют также биполярные электролизеры — где каждый электрод, за исключением крайних работает с одной стороны как анод, с другой стороны как катод.

Данное оборудование работает при различном давлении, в зависимости от типа реакции. Для получения некоторых веществ — например, при получении газов требуется регулировка давления или особые условия. Также нужно следить за давлением газов, которые являются побочным продуктом электролитических реакций. Электролизные установки, которые используются для получения водородв и кислорода на электростанциях работают под избыточным давлением до 10 кгс/см2 (1 МПа).
Установки также отличаются своей производительностью.

В некоторых их них используются прямоходные электрические механизмы. Например, они применяются для перемещения электродов, регулирования уровня электролита, перемещения резервуаров, ванн с электролитом и т.п. Один из примеров такой конструкции приведен на чертеже.

Все электролизные установки должны быть заземлены. Для работы большого промышленного электролизера нужен выпрямительный агрегат или преобразовательная подстанция для преобразования переменного тока в постоянный. Стационарное местное освещение в цехах (корпусах, залах) электролиза обычно не требуется. Исключение — основные производственные помещения электролизных установок получения хлора.

Технологии промышленного электролиза подразделяются на несколько типов:

  • PFPB — технология электролиза с использованием обожженных анодов и точечных питателей
  • CWPB — электролиз с использованием обожженных анодов и балки продавливания по центру
  • SWPB — периферийная обработка электролизеров с обожженными анодами
  • VSS — технология Содерберга с верхним токоподводом
  • HSS — технология Содерберга с боковым токоподводом

Наибольший объем удельных выбросов из электролизеров приходится на процессы электролиза, в основе которых лежит технология Содерберга. Данная технология получила наибольшее распространение на алюминиевых заводах России и Китая. Объем удельных выбросов из таких электролизерах значительно выше относительно других технологий. Количество выбросов фторуглеродов сокращают в том числе и изучая технологические параметры анодного эффекта, снижение которого также влияет на количество выбросов.

Модели промышленных электролизеров

У углеродных анодов (а графит — это аллотоп углерода) — есть существенный недостаток — при проведении реакции они выбрасывают в атмосферу углекислый газ, тем самым загрязняя ее. В настоящее время особенно актуальна технология инертного анода, сейчас данную технологию тестирует известный производитель алюминия. Суть ее в том, что для используется не вступающий в реакции безуглеродный анод, и как побочный продукт в атмосферу выделяется не углекислый газ, а чистый кислород.

Данная технология существенно повышает экологичность производства, но пока она находится на этапе тестирования.

Несмотря на большое разнообразие электролитов, электродов, электролизеров, имеются общие проблемы технического электролиза. К ним следует отнести перенос зарядов, тепла, массы, распределение электрических полей. Для ускорения процесса переноса целесообразно увеличивать скорости всех потоков и применять принудительную конвекцию. Электродные процессы могут контролироваться путем измерения предельных токов.

Просмотров: 5093 | Дата публикации: Четверг, 19 марта 2015 11:01 |

источник

Что такое электролизер и как его сделать своими руками?

Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.

Что такое электролизер, его характеристики и применение

Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.

Читайте также:  Установка железных перегородок в подъезде

Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м 3 /ч).

Промышленная стационарная электролизная установка, вырабатывающая 40 м3 водорода в час (СЭУ-40)

Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:

  1. Уровень напряжения (минимального электродного потенциала), оно должно быть от 1,8 до 2 вольт, меньшее значение «не запустит» процесс, а большее приводит к чрезмерному расходу энергии, идущей на нагрев электролита. Если в качестве источника используется блок питания, например, на 14 вольт имеет смысл разделить емкость ванны пластинами на 7 ячеек, в соответствии с рисунком 2. Рис 2. Расположение пластин в ванне электролизера

Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.

  1. Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
  2. Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
  3. Концентрация электролита и его тепловой баланс.
  4. Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
  5. Применение катализаторов процесса и т.д.

Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).

А) Установка прямого электролиза воды (УПЭВ); Б) анализатор качества воды Tesp 001

Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.

Устройство и подробный принцип работы

Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.

Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.

Рисунок 4. Конструкция простого электролизера

В результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.

Виды электролизеров

Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.

Сухие

Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.

Проточные

С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».

Рис 5. Конструкция проточного электролизера

Принцип работы устройства следующий:

  • входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
  • в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
  • электролит возвращается в гидролизную ванну через трубу «Е».

Мембранные

Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.

Рис 6. Электролизер мембранного типа

Основная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.

Диафрагменные

В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.

Читайте также:  Установка крепления на диван

Конструкция диафрагменного электролизера

  1. Выход для кислорода.
  2. U-образная колба.
  3. Выход для водорода.
  4. Анод.
  5. Катод.
  6. Диафрагма.

Щелочные

Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.

На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:

  1. Можно использовать железные электроды.
  2. Не выделяются вредные вещества.

Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.

Электролизер для получения водорода: чертежи, схема

Рассмотрим, как можно сделать мощную газовую горелку, работающую от смеси водорода с кислородом. Схему такого устройства можно посмотреть на рисунке 8.

Рис. 8. Устройство водородной горелки

  1. Сопло горелки.
  2. Резиновые трубки.
  3. Второй водяной затвор.
  4. Первый водяной затвор.
  5. Анод.
  6. Катод.
  7. Электроды.
  8. Ванна электролизера.

На рисунке 9 представлена принципиальная схема блока питания для электролизера нашей горелки.

Рис. 9. Блок питания электролизной горелки

На мощный выпрямитель нам понадобятся следующие детали:

  • Транзисторы: VT1 – МП26Б; VT2 – П308.
  • Тиристоры: VS1 – КУ202Н.
  • Диоды: VD1-VD4 – Д232; VD5 – Д226Б; VD6, VD7 – Д814Б.
  • Конденсаторы: 0,5 мкФ.
  • Переменные резисторы: R3 -22 кОм.
  • Резисторы: R1 – 30 кОм; R2 – 15 кОм; R4 – 800 Ом; R5 – 2,7 кОм; R6 – 3 кОм; R7 – 10 кОм.
  • PA1 – амперметр со шкалой измерения не менее 20 А.

Краткая инструкция по деталям к электролизеру.

Ванну можно сделать из старого аккумулятора. Пластины следует нарезать 150х150 мм из кровельного железа (толщина листа 0,5 мм). Для работы с вышеописанным блоком питания потребуется собрать электролизер на 81 ячейку. Чертеж, по которому выполняется монтаж, приведен на рисунке 10.

Рис. 10. Чертеж электролизера для водородной горелки

Заметим, что обслуживание такого устройства и управление им не вызывает трудностей.

Электролизер для автомобиля своими руками

В интернете можно найти много схем HHO систем, которые, если верить авторам, позволяют экономить от 30% до 50% топлива. Такие заявления слишком оптимистичны и, как правило, не подтверждаются никакими доказательствами. Упрощенная схема такой системы продемонстрирована на 11 рисунке.

Упрощенная схема электролизера для автомобиля

По идее, такое устройство должно снизить расход топлива за счет его полного выгорания. Для этого в воздушный фильтр топливной системы подается смесь Брауна. Это водород с кислородом, полученные из электролизера, запитанного от внутренней сети автомобиля, что повышает расход топлива. Замкнутый круг.

Безусловно, может быть задействована схема шим регулятора силы тока, использован более эффективный импульсный блок питания или другие хитрости, позволяющие снизить расход энергии. Иногда в интернете попадаются предложения приобрести низкоамперный БП для электролизера, что вообще является нонсенсом, поскольку производительность процесса напрямую зависит от силы тока.

Это как система Кузнецова, активатор воды которой утерян, а патент отсутствует и т.д. В приведенных видео, где рассказывают о неоспоримых преимуществах таких систем, практически нет аргументированных доводов. Это не значит, что идея не имеет прав на существование, но заявленная экономия «слегка» преувеличена.

Электролизер своими руками для отопления дома

Делать самодельный электролизер для отопления дома на данный момент не имеет смысла, поскольку стоимость водорода, полученного путем электролиза значительно дороже природного газа или других теплоносителей.

Также следует учитывать, что температуру горения водорода не выдержит никакой металл. Правда имеется решение, которое запатентовал Стен Мартин, позволяющее обойти эту проблему. Необходимо обратить внимание на ключевой момент, позволяющий отличить достойную идею от очевидного бреда. Разница между ними заключается в том, что на первый выдают патент, а второй находит своих сторонников в интернете.

На этом можно было бы и закончить статью о бытовых и промышленных электролизерах, но имеет смысл сделать небольшой обзор компаний, производящих эти устройства.

Обзор производителей электролизеров

Перечислим производителей, выпускающих топливные элементы на базе электролизеров, некоторые компании также выпускают и бытовые устройства: NEL Hydrogen (Норвегия, на рынке с 1927 года), Hydrogenics (Бельгия), Teledyne Inc (США), Уралхиммаш (Россия), РусАл (Россия, существенно усовершенствовали технологию Содерберга), РутТех (Россия).

источник

Добавить комментарий