Меню Рубрики

Установки горизонтального и вертикального литья

Горизонтальное непрерывное литьё

Первый патент по горизонтальному непрерывному литью был получен американцем Дж. Лайнингом в 1826 г. Предложенная им установка предназначалась для отливки свинцовых труб, и содержала в себе основные принципиальные черты схемы горизонтальной разливки. Мак-Элрой в 1881 г. получил патент на способ и устройство для производства труб из стали, феррохрома и цветных металлов. Из металлоприемника металл под давлением поршня подавался в кристаллизатор с дорном. Вытягивание заготовки осуществлялось валками. В 1914 г. Персон предложил способ и устройство для горизонтального непрерывного литья металлов, при котором водоохлаждаемый кристаллизатор совершал возвратно-поступательное движение относительно металлоприемника и заготовки. Этот патент не нашел применения, так как не был решен вопрос соединения кристаллизатора с металлоприемником. Не смотря на большое обилие довольно ранних патентов по непрерывному горизонтальному литью, первые промышленные установки появились лишь в 60 годах ХХ.

В настоящее время методом непрерывного горизонтального литья изготовляют сотни наименований заготовок различного профиля, в том числе круглые диаметром от 10—15 до 400 мм, квадратные, шестигранные, прямоугольные и многогранные заготовки с различным со­отношением размеров, трубы и втулки диаметром от 50 до 300 мм. Методом непрерывного литья отливают штанги, направляющие станков, корпуса подшипников, планки, плиты, заготовки для реек, шестерен, крышек, корпуса гидро- и пневмо-аппаратуры и ряд других деталей для многих отраслей промышленности. Такие заготовки изготовляют из чугуна, медных сплавов (бронзы, латуни), алюминиевых сплавов.

Рис. 1: Схема кристаллизатора для горизонтального непрерывного литья

Принципиальная схема процесса горизонтального непрерывного литья на установке с графитовым водоохлаждаемым кристалли­затором показана на рис. 1. В стенке металлоприёмника 1 устанавливают кристаллизатор, состоящий из водоохлаждаемой рубашки 2 и графитовых вкладышей 3, а при необходимости получения отверстия в отливке — стержень 4 с отверстиями 5 для прохода расплава. В начале процесса внутрь кристаллизатора вводят затравку-захват. Расплав, залитый в разогретый металлоприемник, заполняет водоохлаждаемый кристаллизатор, где начинает затвердевать в заготовку, наружный профиль которой соответствует геоме­трии кристаллизатора. После выдержки металла, для формирования отливки в кристаллизаторе, начинают извлекать ее из кристаллизатора за затравку-захват. С самого начала процесса литья: сначала затравка, а потом и сам слиток перемещаются при помощи тянущего устройства. Затем без остановки процесса литья слитки режутся на мерные отрезки при помощи летучей пилы, и при помощи кантователя отводятся в сторону. В случае литья проволочных заготовок они не режутся, а нматываются на катушки (бабины). Объём расплава в металлоприемнике периодически восполняется, таким обра­зом процесс литья протекает непре­рывно.

Металлоприемник фактически играет роль некристаллизующейся постоянно действующей прибы­ли, благодаря чему конечный продукт характеризуется повышенными чистотой, плотностью, хорошим качеством поверхности и лучшими механическими свой­ствами.

Рис. 2: Схема установки горизонтального непрерывного литья CALAMARI SRA

На литейных заводах стран СНГ можно встретить линии непрерывного горизонтального литья конструкции НИИСЛа (Научно-исследовательский институт специальных способов литья, г. Одесса), коротаявключает агрегат кристаллизации, тянущую клеть, надрезное устройство и агрегат обломки. Линия также оборудована камерой охлаждения, укрытием и системой направляющих и прижимных роликов. Агрегат представляет собой канальный индукционный миксер, на передней стороне которого закрепляется кристаллизатор. Крышка миксера снабжена газовой горелкой для обогрева зеркала расплава. Для слива металла в миксере предусмотрены летка с жёлобом, а также механизм поворота. Кристаллизатор состоит из металлического водоохлаждаемого корпуса и графитового кристаллизатора. Применение индукционного миксера обес­печивает постоянство температуры металла, что существенно для процесса непре­рывного литья, особенно при получении заготовок сложного профиля и с малой площадью поперечного сечения. Смену кристаллизатора можно производить при работающем индукционном миксере. Все технологические операции в линии автоматизиро­ваны. Линия обслуживается двумя рабочими и предназначена для непрерывной работы.

На рис. 2 представлена технологическая схема линии горизонтального непрерывного литья итальянской компании CALAMARI SRA. Начиная с 1994 года в компании организовано производство машин непрерывной разливки цветных металлов, которые используются для производства прутка, труб, катанки, полосы и заготовок из меди, латунных сплавов, бронзы и драгоценных металлов.

Режимы вытяжки в промышленных установках преимущественно являются прерывистыми, т. е. вытягивание монотонно чередуется с остановкой. В началь­ный момент затвердевания заготовка стягивается с поверхности кристаллизатора и, передви­гаясь в процессе вытягивания, последовательно освобождает участок, протяжен­ность которого равна шагу вытягивания. На освобождающийся участок поверхности кристаллизатора по­ступают свежие порции расплава, и идет последовательный процесс наморажива­ния корочки — оболочки отливаемой заготовки. Одновременно с этим наращива­ется слой на передвигающейся заготовке. Во время остановки образовавшаяся по периметру корочка стыкуется с вытягиваемой заготовкой и при последующем цикле стягивается с кристаллизатора. Далее циклы непрерывного литья повторяются.

На поверхности заготовок, получаемых непрерывным литьем, имеются харак­терные следы, являющиеся, следствием процесса прерывистого вытягивания. Расстояние между этими участками соответствует шагу вытягивания.

Выбор оптимальных параметров литья зависит от многих факторов: химиче­ского состава сплава, его жидкотекучести и температуры, допустимой скорости теплоотвода, площади поперечного сечения и соотношения размеров заготовки в сечении. В связи с этим в линиях непрерывного литья, предназначенных для производства различных по сечению заготовок из разных марок сплавов, преду­смотрен широкий диапазон настройки основных технологических параметров: продолжительность вытягивания 1—10 с; продолжительность остановки 2—20 о; скорость вытягивания 0,2—2,0 м/мин.

Читайте также:  Установка встроенного варочной поверхности

Рис. 3: Установка ГНЛ CALAMARI SRA осуществляет вытяжку «в три ручья»

Производительность установок непрерывного литья определяется площадью и соотношением размеров поперечного сечения заготовки. С увеличением условного диаметра заготовки производительность по массе существенно возрастает. Низ­кая производительность при малых сечениях компенсируется применением много-ручьевых установок.

Процесс затвердевания заготовок и формирования их структуры в значи­тельной мере предопределяется постоянным давлением расплава, находящегося в миксере-металлоприемнике, и большой скоростью теплоотвода. В соответствии с этим заготовки, полученные непрерывным литьем, не имеют дефектов, характер­ных для традиционных методов литья. Изломы характеризуются плотной структу­рой мелкокристаллического строения. При соблюдении параметров литья отсут­ствуют пористость, газовые раковины, засоры, шлаковые включения и другие литейные дефекты. Поверхность заготовок — гладкая, без пригара. Эти преиму­щества литья в сочетании с непрерывностью процесса позволяют достигать вы­хода годного литья более 90%, что недостижимо другими методами литья.

Высокое качество получаемых заготовок, уменьшенные припуски на механи­ческую обработку, существенное повышение выхода годного литья, возможность получения заготовок неограниченной протяженности, малые производственные площади, необходимые для установки оборудования, и степень автоматизации процесса при небольшом количестве обслуживающего персонала и хороших усло­виях труда являются основой для дальнейшего развития и расширения произ­водства заготовок прогрессивным методом непрерывного литья.

Для создания полноты картины предлагаем посмотреть совсем маленький фильм об этом процессе.

источник

Оборудование для центробежного литья

Что такое центробежное литье

Металлические формы для центробежного литья называют кокилями, или изложницами. Центробежный способ применяют также для заливки в разовые формы титановых, бронзовых, чугунных, стальных и других сплавов.

При данном способе литья сплав заливают в подогретую вращающуюся форму (рис. 1). Он начинает вращаться под действием центробежных сил и затвердевает. Еще горячую отливку извлекают из формы, форму охлаждают до оптимальной температуры (200. . .300 °С), на ее рабочую поверхность наносят теплоизоляционное покрытие, и процесс повторяется.

Рис. 1. Схемы центробежного литья

Возможны три схемы центробежного литья. При любой схеме ось вращения формы может быть горизонтальной, вертикальной или наклонной.

Наиболее широко распространена схема I. По ней получают полые цилиндрические отливки без стержней. Машины с горизонтальной осью вращения (рис. 1, а) применяют для отливки длинных тел вращения: длина в 3 раза больше, чем диаметр. Свободная поверхность отливки представляет собой цилиндр. Свободной поверхностью отливки называется поверхность, которая не контактирует со стенками литейной формы, а только с воздухом.

На машинах с вертикальной осью вращения (рис. 1, б) получают короткие тела вращения из-за разностенности по высоте отливки. Свободная поверхность — параболоид. Разностенность тем больше, чем выше отливка.

Схемы II и III, при реализации которых нет свободной поверхности, применяют реже, в них центробежные силы используют для повышения плотности отливок или улучшения заполнения тонкостенных отливок.

Центробежный способ литья по схеме I позволяет использовать вместо антипригарных красок для покрытия стенок формы сыпучие сухие без связующих огнеупорные теплоизоляционные покрытия форм. Поэтому перед заливкой во вращающуюся форму вводят песок, который центробежными силами распределяется по рабочей поверхности равномерным слоем.

Скорость вращения формы выбирают из условий получения отливки правильной геометрической формы и создания центробежных сил, необходимых для оптимального процесса затвердевания отливки. Наименьшим будет число оборотов, при котором нет дождевания — отрыва капель металла от потока и их падения, т. е. центробежная сила на свободной поверхности несколько больше силы тяжести.

Рис. 2. Схема получения чугунной трубы центробежным способом: а — исходное положение; б — заливка чугуна; в — окончание заливки; г — извлечение отливки и возвращение машины в исходное положение.

На рис. 2 показан процесс отливки труб. В исходном положении (рис. 2, а) заливочный лоток 4 введен в самую дальнюю часть изложницы 2, которая установлена на роликах внутри защитного кожуха 3 и приводится во вращение от привода 1. После того как металл из раздаточного ковша 5 по лотку 4 заполнит самую низко расположенную часть изложницы 2 (рис. 2, б), она с помощью тележки вместе с приводом смещается влево и металл попадает в другую ее часть. Так продолжается до полного заполнения (рис. 2, в, г).

Центробежным способом изготовляют крупные отливки из легированных сталей для прокатки труб, втулки и венцы из антифрикционных сплавов, мелющие тела из белого чугуна, гильзы (автомобильных и тракторных двигателей) из легированного чугуна, напорные и сливные чугунные трубы, гребные винты (по схеме II, рис. 1), детали из жаропрочных и титановых сплавов.

Рис. 3. Вертикальная машина центробежного литья ЦБМ-05

Читайте также:  Установка sendmail на red hat

1. Вертикальные машины центробежного литья

Вертикальная машина центробежного литья ЦБМ-05 (рис. 3) снабжена механизмом погашения вибраций и имеет плавное регулирование частоты вращения кокиля с 350 до 1500 мин -1 . Размеры выплавляемых изделий: наружный диаметр от 80 до 500 мм, внутренний — от 50 до 450 мм, высота отливки до 400 мм

2. Горизонтальные машины центробежного литья

Машина центробежного литья МЦВР (рис. 4) предназначена для отливки чугунных роликов прокатных станов. Имеет горизонтальную ось вращения. Для заливки расплавленный металл подвозится от печи на тележке 19 в разливочных ковшах 1 и заливается в ковш объемного дозирования 3, работой которого руководит оператор, находящийся в защитной кабине 2 Из ковша объемного дозирования через заливочное устройство 4 металл подается в чугунный кокиль 12, находящийся в изложнице 7. Кокиль вместе с изложницей вращаются со скоростью до 1000 мин -1 с помощью приводного устройства 9 Для свободного извлечения отливки из кокиля после ее остывания служат передняя 10 и задняя 15 крышки, защищаемые от воздействия расплавленного чугуна графитно-шамотными вставками 11 и 14

Рис. 4. Машина центробежного литья МЦВР: 1 — ковш (барабанный) разливочный; 2 — кабина заливщика; 3 — ковш объемного дозирования; 4 — заливочное устройство; 5 — неподвижная опора; 6 — защитный кожух; 7 — изложница; 8 — подвижная опора; 9 — приводное устройство; 10 — крышка передняя; 11, 14 — графитно-шамотные вставки; 12 — кокиль чугунный; 13 — изложница стальная; 15 — крышка задняя; 16 — блок подготовки воздуха; 17 — механизм перемещения приводного устройства; 18 — станина; 19 — тележка

На машине можно отлить детали диаметром от 230 до 960 мм и длиной до 1200 мм. Если отливается деталь типа втулки, то отверстие должно быть не менее 90 мм.

Отсутствие наклона оси кокиля в вертикальной плоскости обусловлено тем, что на машине отливают относительно короткие заготовки. При увеличении отношения длины заготовки к ее диаметру станину машины центробежного литья делают наклонной с регулируемым углом наклона изложницы от 4 до 90°.

Рис. 5. Двухроторная машина для центробежного литья модели 4986

Кроме однопозиционных машин, выпускаются двухпозиционные и многопозиционные (карусельные) машины (см. рис. 1, б, схема III). На рис. 5 показана двухроторная машина для центробежного литья модели 4986. Она предназначена для производства мелющих шаров из чугуна и колец подшипников из стали. Имеет горизонтальную ось вращения кокилей.

Машина действует в полуавтоматическом режиме с ручной заливкой жидкого металла После разогрева кокилей газовыми горелками она работает в следующем цикле:

  • обе половинки кокиля окрашивают специальной теплоизоляционной краской, покрытие просушивают;
  • половинки кокиля смыкаются;
  • заливочный лоток вводится внутрь кокиля, металл заливается строго дозированной порцией;
  • лоток выводится из кокиля, а кокиль продолжает вращение до полного затвердевания отливок;
  • вращение центрифуги прекращается, отводится передняя половинка кокиля и извлекается куст отливок;
  • половинки кокиля очищаются от засоров и окрашиваются.

Машина оборудована пневматической системой выталкивания отливки из изложницы в приемный лоток, трехступенчатой клиноременной передачей привода вращения изложницы, механизмом подвода и отвода приемного лотка, водяным охлаждением корпуса изложницы.

источник

Горизонтальное непрерывное литьё

Первый патент по горизонтальному непрерывному литью был получен американцем Дж. Лайнингом в 1826 г. Предложенная им установка предназначалась для отливки свинцовых труб, и содержала в себе основные принципиальные черты схемы горизонтальной разливки. Мак-Элрой в 1881 г. получил патент на способ и устройство для производства труб из стали, феррохрома и цветных металлов. Из металлоприемника металл под давлением поршня подавался в кристаллизатор с дорном. Вытягивание заготовки осуществлялось валками. В 1914 г. Персон предложил способ и устройство для горизонтального непрерывного литья металлов, при котором водоохлаждаемый кристаллизатор совершал возвратно-поступательное движение относительно металлоприемника и заготовки. Этот патент не нашел применения, так как не был решен вопрос соединения кристаллизатора с металлоприемником. Не смотря на большое обилие довольно ранних патентов по непрерывному горизонтальному литью, первые промышленные установки появились лишь в 60 годах ХХ.

В настоящее время методом непрерывного горизонтального литья изготовляют сотни наименований заготовок различного профиля, в том числе круглые диаметром от 10—15 до 400 мм, квадратные, шестигранные, прямоугольные и многогранные заготовки с различным со­отношением размеров, трубы и втулки диаметром от 50 до 300 мм. Методом непрерывного литья отливают штанги, направляющие станков, корпуса подшипников, планки, плиты, заготовки для реек, шестерен, крышек, корпуса гидро- и пневмо-аппаратуры и ряд других деталей для многих отраслей промышленности. Такие заготовки изготовляют из чугуна, медных сплавов (бронзы, латуни), алюминиевых сплавов.

Рис. 1: Схема кристаллизатора для горизонтального непрерывного литья

Принципиальная схема процесса горизонтального непрерывного литья на установке с графитовым водоохлаждаемым кристалли­затором показана на рис. 1. В стенке металлоприёмника 1 устанавливают кристаллизатор, состоящий из водоохлаждаемой рубашки 2 и графитовых вкладышей 3, а при необходимости получения отверстия в отливке — стержень 4 с отверстиями 5 для прохода расплава. В начале процесса внутрь кристаллизатора вводят затравку-захват. Расплав, залитый в разогретый металлоприемник, заполняет водоохлаждаемый кристаллизатор, где начинает затвердевать в заготовку, наружный профиль которой соответствует геоме­трии кристаллизатора. После выдержки металла, для формирования отливки в кристаллизаторе, начинают извлекать ее из кристаллизатора за затравку-захват. С самого начала процесса литья: сначала затравка, а потом и сам слиток перемещаются при помощи тянущего устройства. Затем без остановки процесса литья слитки режутся на мерные отрезки при помощи летучей пилы, и при помощи кантователя отводятся в сторону. В случае литья проволочных заготовок они не режутся, а нматываются на катушки (бабины). Объём расплава в металлоприемнике периодически восполняется, таким обра­зом процесс литья протекает непре­рывно.

Читайте также:  Установка office 2013 на терминальный сервер

Металлоприемник фактически играет роль некристаллизующейся постоянно действующей прибы­ли, благодаря чему конечный продукт характеризуется повышенными чистотой, плотностью, хорошим качеством поверхности и лучшими механическими свой­ствами.

Рис. 2: Схема установки горизонтального непрерывного литья CALAMARI SRA

На литейных заводах стран СНГ можно встретить линии непрерывного горизонтального литья конструкции НИИСЛа (Научно-исследовательский институт специальных способов литья, г. Одесса), коротаявключает агрегат кристаллизации, тянущую клеть, надрезное устройство и агрегат обломки. Линия также оборудована камерой охлаждения, укрытием и системой направляющих и прижимных роликов. Агрегат представляет собой канальный индукционный миксер, на передней стороне которого закрепляется кристаллизатор. Крышка миксера снабжена газовой горелкой для обогрева зеркала расплава. Для слива металла в миксере предусмотрены летка с жёлобом, а также механизм поворота. Кристаллизатор состоит из металлического водоохлаждаемого корпуса и графитового кристаллизатора. Применение индукционного миксера обес­печивает постоянство температуры металла, что существенно для процесса непре­рывного литья, особенно при получении заготовок сложного профиля и с малой площадью поперечного сечения. Смену кристаллизатора можно производить при работающем индукционном миксере. Все технологические операции в линии автоматизиро­ваны. Линия обслуживается двумя рабочими и предназначена для непрерывной работы.

На рис. 2 представлена технологическая схема линии горизонтального непрерывного литья итальянской компании CALAMARI SRA. Начиная с 1994 года в компании организовано производство машин непрерывной разливки цветных металлов, которые используются для производства прутка, труб, катанки, полосы и заготовок из меди, латунных сплавов, бронзы и драгоценных металлов.

Режимы вытяжки в промышленных установках преимущественно являются прерывистыми, т. е. вытягивание монотонно чередуется с остановкой. В началь­ный момент затвердевания заготовка стягивается с поверхности кристаллизатора и, передви­гаясь в процессе вытягивания, последовательно освобождает участок, протяжен­ность которого равна шагу вытягивания. На освобождающийся участок поверхности кристаллизатора по­ступают свежие порции расплава, и идет последовательный процесс наморажива­ния корочки — оболочки отливаемой заготовки. Одновременно с этим наращива­ется слой на передвигающейся заготовке. Во время остановки образовавшаяся по периметру корочка стыкуется с вытягиваемой заготовкой и при последующем цикле стягивается с кристаллизатора. Далее циклы непрерывного литья повторяются.

На поверхности заготовок, получаемых непрерывным литьем, имеются харак­терные следы, являющиеся, следствием процесса прерывистого вытягивания. Расстояние между этими участками соответствует шагу вытягивания.

Выбор оптимальных параметров литья зависит от многих факторов: химиче­ского состава сплава, его жидкотекучести и температуры, допустимой скорости теплоотвода, площади поперечного сечения и соотношения размеров заготовки в сечении. В связи с этим в линиях непрерывного литья, предназначенных для производства различных по сечению заготовок из разных марок сплавов, преду­смотрен широкий диапазон настройки основных технологических параметров: продолжительность вытягивания 1—10 с; продолжительность остановки 2—20 о; скорость вытягивания 0,2—2,0 м/мин.

Рис. 3: Установка ГНЛ CALAMARI SRA осуществляет вытяжку «в три ручья»

Производительность установок непрерывного литья определяется площадью и соотношением размеров поперечного сечения заготовки. С увеличением условного диаметра заготовки производительность по массе существенно возрастает. Низ­кая производительность при малых сечениях компенсируется применением много-ручьевых установок.

Процесс затвердевания заготовок и формирования их структуры в значи­тельной мере предопределяется постоянным давлением расплава, находящегося в миксере-металлоприемнике, и большой скоростью теплоотвода. В соответствии с этим заготовки, полученные непрерывным литьем, не имеют дефектов, характер­ных для традиционных методов литья. Изломы характеризуются плотной структу­рой мелкокристаллического строения. При соблюдении параметров литья отсут­ствуют пористость, газовые раковины, засоры, шлаковые включения и другие литейные дефекты. Поверхность заготовок — гладкая, без пригара. Эти преиму­щества литья в сочетании с непрерывностью процесса позволяют достигать вы­хода годного литья более 90%, что недостижимо другими методами литья.

Высокое качество получаемых заготовок, уменьшенные припуски на механи­ческую обработку, существенное повышение выхода годного литья, возможность получения заготовок неограниченной протяженности, малые производственные площади, необходимые для установки оборудования, и степень автоматизации процесса при небольшом количестве обслуживающего персонала и хороших усло­виях труда являются основой для дальнейшего развития и расширения произ­водства заготовок прогрессивным методом непрерывного литья.

Для создания полноты картины предлагаем посмотреть совсем маленький фильм об этом процессе.

источник