Меню Рубрики

Установки каталитического крекинга бондаренко

Бондаренко Б.И., Никулин Д.Д., Суханов В.П. Каталитический крекинг

М.: Государственное научно-техническое издательство нефтяной и горно-топливной литературы, 1956. — 209 с.
Книга является учебным пособиям для подготовки и повышения квалификации операторов и помощников операторов, обслуживающих установки каталитического крекинга.
В книге рассмотрены схемы современных установок каталитического крекинга, конструкции применяемых аппаратов, условия их эксплуатации, способы регулирования технологического режима, выходы продуктов крекинга и их качество, подготовка сырья, контроль качества катализатора, техника безопасности и организации труда на установках каталитического крекинга.

Углеводороды и их крекинг

Углеводороды
Крекинг углеводородов

Сырье и катализаторы каталитического крекинга

Сырье
Способы получения сырья для каталитического крекинга
Катализаторы крекинга
Схемы циркуляции катализатора на установках каталитического крекинга

Основы технологии каталитического крекинга

Продукты каталитического крекинга
Выходы продуктов при каталитическом крекинг-процессе
Условия процесса каталитического крекинга
Регенерация катализатора

Установка каталитического крекинга с циркуляцией шарикового катализатора

Технологическая схема установки
Аппаратура установки каталитического крекинга с циркуляцией шарикового катализатора
Контрольно-измерительные приборы и автоматика установки каталитического крекинга

Установки каталитического крекинга с циркуляцией пылевидного катализатора

Эксплуатация установок каталитического крекинга с циркуляцией шарикового катализатора

Пуск установки
Эксплуатация установки на рабочем режиме
Нормальная остановка установки
Производственные неполадки и их устранение

Каталитическая очистка бензинов

Сырье
Продукты каталитической очистки
Выходы продуктов при каталитической очистке

Лабораторный контроль работы установки каталитического крекинга

Контроль качества сырья
Контроль технологического процесса
Контроль качества катализатора

Стабилизация бензина и фракционирование газов каталитического крекинга. Производство товарных авиабензинов

Стабилизация бензина и фракционирование газов .
Производство товарных авиабензинов

Техника безопасности при эксплуатации установок каталитического крекинга

Основные правила безопасности при эксплуатации установок каталитического крекинга
Некоторые правила безопасности при подготовке аппаратов к ремонту и при ремонте
Дополнительные правила безопасности при переработке сернистого сырья
Некоторые правила безопасности при эксплуатации заводов в зимних условиях
Защита от вторичных проявлений молнии и статического электричества
Основные правила безопасности при эксплуатации вспомогательного оборудования

Организация труда и производства

Основные обязанности членов технологической бригады
Прием и сдача вахты
Заработная плата рабочих и нормы выработки

источник

Каталитический крекинг

Каталитический крекинг — техпроцесс, при котором тяжелые молекулы углеводорода распадаются на легкие молекулы при прохождении через соответствующий катализатор (обычно при нагреве). Способствует углублению переработки нефти. Используется для получения высокооктановых бензинов.

Каталитический крекинг — один из важнейших процессов, обеспечивающих глубокую переработку нефти. Внедрению каталитического крекинга в промышленность в конце 30-х гг. 20 в. (США) способствовало создание эффективного с большим сроком службы катализатора на основе алюмосиликатов (Э. Гудри, 1936 г).
Основное достоинство процесса — большая эксплуатационная гибкость: возможность перерабатывать различные нефтяные фракции с получением высокооктанового бензина и газа, богатого пропиленом, изобутаном и бутенами; сравнительная легкость совмещения с другими процессами, например, с алкилированием, гидрокрекингом, гидроочисткой, адсорбционной очисткой, деасфальтизацией и т. д.
Такой универсальностью объясняется весьма значительная доля каталитического крекинга в общем объёме переработки нефти.

При каталитическом крекинге происходят следующие основные реакции: разрыв связей С-С, то есть перераспределение водорода (гидрирование и дегидрирование), деалкилирование, дегидроциклизация, полимеризация, конденсация.

Соотношение скоростей этих реакций зависит от состава сырья, типа катализатора и условий проведения процесса.

При каталитическом крекинге парафинов образуются, в основном, менее высокомолекулярные алканы и олефины, причем содержание последних увеличивается с повышением молекулярной массы сырья. Более высокомолекулярные парафины расщепляются легче в отличие от низкомолекулярных.

Крекинг парафинов нормального строения сопровождается вторичными реакциями, приводящими к образованию ароматических углеводородов и кокса, и обычно происходит труднее и менее глубоко, чем расщепление изопарафинов.

Нафтеновые углеводороды с длинными алкильными цепями при каталитическом крекинге превращаются в алкилнафтеновые или алкилароматические углеводороды со сравнительно короткими боковыми цепями.

Крекинг ароматических углеводородов (преимущественно алкилароматических) сопровождается их деалкилированием и переалкилированием, а также конденсацией.

При деалкилировании образуются парафины, олефины и алкилароматические соединения меньшей молекулярной массы.

Реакционная способность ароматических углеводородов возрастает с увеличением их молекулярной массы.

Конденсация ароматических углеводородов друг с другом или с непредельными соединениями приводит к образованию полициклических углеводородов, что способствует отложению кокса на поверхности катализатора.

Наряду с упомянутыми происходят следедующие важные вторичные реакции: изомеризация, полимеризация, циклизация и др. реакции с участием олефинов, образующихся при крекинге сырья; алкилирование ароматических углеводородов, приводящее к более тяжелым продуктам, которые способны алкилироваться дальше или конденсироваться с образованием кокса и т. д. Поскольку отложению кокса на поверхности катализатора способствуют все вторичные реакции, интенсивность их оценивают соотношением выходов бензина и кокса. Чем выше это соотношение, тем селективнее процесс. Количество и качество продуктов крекинга зависят от характера сырья, типа катализатора и технологического режима процесса. При этом влияние заданных параметров (давление, температуры нагрева сырья в трубчатой печи и реакторе, а также время контакта исходной фракции с катализатором) оценивают обычно по изменению степени превращения сырья. Степень равна сумме выходов бензина, газообразных углеводородов и кокса и достигает на современных установках каталитического крекинга 70-80% по массе. Выбор температуры определяется характеристиками катализатора и сырья и, прежде всего, временем их контакта, технологической схемой и назначением процесса, устройством реакторного блока. Повышение температуры способствует возрастанию глубины конверсии сырья, постепенному уменьшению выхода бензина, усилению коксообразования, а также увеличению степени ароматизации продуктов крекинга, что приводит к повышению октанового числа бензина и снижению цетанового числа компонентов дизельного топлива. Макс. выход газойлевых фракций достигается при сравнительно низких температурах крекинга, бензина и углеводородов С3-С4 — при высоких.

Читайте также:  Установка dns сервер linux

Сырьем каталитического крекинга служит вакуумный газойль — прямогонная фракция с пределами выкипания 350-500°С.
Конец кипения определяется, в основном, содержанием металлов и коксуемостью сырья, которая не должна превышать 0,3%.
Фракция подвергается предварительной гидроочистке для удаления сернистых соединений и снижения коксуемости.
Также у ряда компаний (UOP, IFP) имеется ряд разработанных процессов каталитического крекинга тяжелых фракций — например, мазута (с коксуемостью до 6-8%).
Так же в качестве сырья используют остаток гидрокрекинга, возможно использование как компонентов сырья деасфальтизатов.

Каталитический крекинг проводят в прямоточных реакторах с восходящим потоком микросферического катализатора (лифт-реакторах) или в реакторах с нисходящим компактным слоем шарикового катализатора.

Отработанный катализатор непрерывно выводят из реакторов и подвергают регенерации путем выжига кокса в отдельном аппарате.
Реактор — с кратность циркуляции катализатора к сырью — 10:1 (для установок с лифт-реактором), температура — 510-540 °C, давление — 0,5-2 атм
Регенератор :температура — 650-700 °C, давление — 1-3 атм

Используется цеолитсодержащий микросферический катализатор (размер частиц 35-150 мкм). Площадь поверхности 300-400 м²/гр. Он представляет собой крекирующий цеолитный компонент, нанесенный на аморфную алюмосиликатную матрицу. Содержание цеолита не превышает 30%. В качестве цеолитного компонента используется ультрастабильный цеолит Y, иногда с добавками цеолита ZSM-5 для увеличения выхода и октанового числа бензина. Ряд компаний при приготовлении катализатора также вводят в цеолит редкоземельные металлы. В катализаторе крекинга также содержатся добавки, уменьшающие истирание катализатора, а также промоторы дожига СО, образующегося в регенераторе при выжиге кокса, до СО2.

Различают установки по организации процесса:
Периодические (реакторы Гудри).

Через нагретый стационарный слой катализатора пропускают сырье и после того как он закоксуется реактор ставят на регенерацию;
Непрерывной регенерации.

Из реактора выводится закоксованный катализатор, с поверхности которого выжигается кокс в отдельном аппарате и возвращается в реактор. После регенерации катализатор сильно нагрет, чего хватает для процесса крекинга, поэтому процесс каталитического крекинга не нуждается в подводе внешнего тепла.

Установки непрерывной регенерации подразделяются:
Реакторы с движущимся слоем катализатора.

Слой шарикового катализатора движется сверху вниз по реактору навстречу поднимающимся парам сырья. При контакте происходит крекинг, катализатор через низ отправляется на регенерацию, продукты на разделение. Регенерация протекает в отдельном аппарате с помощью воздуха; при этом выделяющееся при сгорании кокса теплоиспользуют для генерации пара. Типовая установка — 43-102.
Реакторы с кипящим слоем катализатора. Микросферический катализатор витает в потоке паров сырья. По мере закоксовывания частицы катализатора тяжелеют и падают вниз. Далее катализатор выводится на регенерацию, которая проходит также в кипящем слое, а продукты идут на разделение. Типовые установки — 1А/1М, 43-103.
Реакторы с лифт-реактором. Нагретое сырье в специальном узле ввода диспергируется и смешивается с восходящим потоком катализатора в специальном узле. Далее смесь катализатора и продуктов крекинга разделяется кипящем слое в сепараторе специальной конструкции. Остатки продуктов десорбируются паром в десорбере. Время контакта сырья и катализатора составляет несколько секунд. Типовая установка — 43-107.
Миллисеконд. Характерная особенность процесса — отсутствие лифт-реактора. Катализатор поступает в реактор нисходящим потоком, в катализатор перпендикулярно направлению его движения впрыскиваются пары сырья. Общее время реакции составляет несколько миллисекунд, что позволяет (повысив соотношение катализатор:сырье) добиться повышения выхода бензиновой фракции вплоть до 60-65%
На данный момент наиболее совершенными являются лифт-реакторы. Так, выход бензина на них составляет 50-55% с октановым числом 91/92 , тогда как у реакторов с кипящим слоем выход бензина 37% с октановым числом 90/91.

Выход продукции, в %
Взято всего: 100
Гидроочищенный вакуумный газойль (Фр.350-500°С) 100
Получено всего: 100
H2 0,04
СН4 0,25
C2H6 0,23
C2H4 0,36
C3H8 0,85
С3H6 2,73
Бутан 0,89
Бутены 2,5
изобутан 4,20
бензиновая фракция (ОЧМ-91/92) 58,62
газойль (легкий+тяжелый) 27,17
Кокс + потери 2,17

Параметры продуктов на выходе
Газ
Газ каталитического крекинга наполовину состоит из непредельных углеводородов, в основном, пропилена и бутенов. Также присутствуют значительные количества изобутана. Благодаря этому бутан-бутиленовая фракция газа используется как сырье процесса алкилирования с целью получения высокооктанового бензина. Пропан-пропиленовая фракция используется для выделения пропилена для производства полипропилена. Ввиду большой суммарной мощности установок каталитического крекинга, доля пропилена, вырабатываемый в процессе, составляет до 15% от его общего производства. Сухой газ (водород, метан, этан) используется в качестве топлива в печах заводских установок.
Бензин
В процессе каталитического крекинга вырабатывается высокооктановый бензин с ОЧИ 88-91 пунктов. Кроме того, бензин содержит менее 1% бензола и 20-25% ароматических углеводородов, что дает возможность использовать его для приготовления бензинов согласно последним нормам Евросоюза (Евро-4, Евро-5). Основной недостаток бензина каталитического крекинга — высокое содержание непредельных углеводородов (до 30%) и серы (0,1-0,5%), что очень плохо влияет на стабильность топлива при хранении. Бензин быстро желтеет из-за полимеризации и окисления олефинов и потому не может применяться без смешения с другими бензиновыми фракциями.
Легкий газойль
Легким газойлем каталитического крекинга считается фракция 200-270°С (реже 200-320 или 200-350). В ней содержится большое количество ароматических углеводородов, что приводит к низкому цетановому числу ( как правило, не выше 20-25). Кроме того, даже при условии предварительной гидроочистки сырья, в легком газойле содержится значительное количество сернистых соединений (0,1-0,5%). Из-за этого легкий газойль не может использоваться в больших количествах для приготовления дизельного топлива. Рекомендуемое его содержание в дизельном топливе — до 20% (в случае, если в топливе имеется запас по содержанию серы и цетановому числу). Другое применение легкого газойля — снижение вязкости котельных топлив, судовое топливо и производство сажи.
Тяжелый газойль
Тяжелый газойль каталитического крекинга — это фракция, начинающая кипеть выше 270°С (реже 320,350). Из-за большого содержания полициклических ароматических углеводородов эта фракция (при определенном содержании серы) является прекрасным сырьем процесса коксования с получением высококачественного игольчатого кокса. При невозможности утилизировать фракцию этим путем, её используют как компонент котельного топлива.

Читайте также:  Установка принтера canon mp550

источник

Реакторный блок установки каталитического крекинга

Процесс каталитического крекинга гидроочищенного сырья, описание технологической схемы. Физико-химические свойства веществ, участвующих в процессе. Количество циркулирующего катализатора, расход водяного пара. Расчет и выбор вспомогательного оборудования.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Двигатель типа АО 2-31-2, мощностью 3 кВт.

Для уменьшения уноса продуктов крекинга из реактора в регенератор после зон реакции располагают зону десорбции (отпаривания). Полнота отпаривания катализатора очень важна поскольку недосорбированные углеводороды потребляют повышенное количество воздуха, повышают выход кокса (2-3% масс. на сырьё) и способствуют повышению температуры в регенераторе.

3.5 Устройства для пылеулавливания и отделения катализаторной пыли

Для улавливания пыли на установках каталитического крекинга наибольшее распространение получили циклоны и электростатические осадители — электрофильтры (применяют редко).

Циклоны (до трёх ступеней) обычно устанавливают внутри реактора и регенератора. Конструкции циклонов, используемых на установках, весьма различны, однако принципиально их можно объединить в две группы: с тангенциальным и спиральным входом.

Для работы в потоках с высокой концентрацией твердых частиц используют высокопроизводительные циклоны, а для тонкой очистки отходящих газов применяют высокоэффективные. Исходя из этих соображений, циклон первой ступени должен иметь входной патрубок увеличенного сечения и выполнять функции «разгрузителя», т.е. быть высокопроизводительным. В свою очередь циклон второй ступени — высокоэффективным.

Курсовой проект установки каталитического крекинга мощностью 1,9 млн. тонн в год отвечает всем требованиям по технике безопасности, охране труда и окружающей среды. В ходе проектирования были выполнены:

материальный и тепловой баланс реакторов;

конструктивный расчет реактора;

Отличительной особенностью технического процесса, положенного в основу проекта является то, что с целью повышения выхода и качества бензина, катализатор перед введением в реактор обрабатывается пассиватором на основе соединений сурьмы, в результате чего происходит практически полное восстановление активных свойств регенерированного катализатора и как следствие увеличивается выход бензина, снижается коксообразование.

Список использованных источников

1 Бондаренко Б.И. Установки каталитического крекинга. М.:1959., 304 с.

2 Лукьянов П.И., Басистов А.Г. Пиролиз нефтяного сырья. М.: Гостоптехиздат, 1962., 247 с.

3 Левинтер М.Е., Панченков Г.М., Дейненко П.С. и др. Химия и технология топлив и масел. М.: 1971., №1, с. 16-20.

4 Теплофизические свойства веществ. Справочник . М.-Л.: Госэнергоиздат, 1956, 367 с.

5 Волошин Н.Д., Соняев З.Н., Морозов Б.Ф. и др. Химия и технология топлив и масел. М.: 1967, №3, с. 20-22.

6 Суханов В.П. Каталитические процессы в нефтепереработке. М.:Гостоптехиздат, 1963, 272 с.

7 Нагиев М.Ф. Химия, технология и расчет процессов синтеза моторных топлив. М.: изд. АНСССР, 1955, 542 с.

8 Адельсон С.В. Процессы и аппараты нефтепереработки и нефтехимии. М.: Гостопртехиздат, 1963, 310 с.

10 Молоканов Ю.К. Процессы и аппараты нефтегазопереработки. М.: Химия, 1980.-408с.

11 Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии.- М.: Химия, 1978.-576с.

12 Иоффе И.Л. Проектирование процессов и аппаратов химической технологии.- Л.: Химия, 1991.-352с.

14 Соколов В.Н. Машины и аппараты химических производств.- Л.: Машиностроение, 1982. — 264с.

15 Рабинович В.А., Хавин З.Я. Краткий химический справочник.- Л.: Химия, 1978.-432с.

Читайте также:  Установка прожектора на мачте молниеотвода

16 Дытнерский Ю.И. Основные процессы и аппараты химической технологии: Пособие по проектированию. М.: Химия, 1978.-576с.

источник

Установка каталитического крекинга

Цель установки

Каталитический крекинг — это переработка нефти для получения следующих продуктов:

  1. Компонента бензина с октановым числом 92
  2. Сжиженных углеводородных газов – пропан-пропиленовая фракция (ППФ) и бутан-бутиленовая фракция (ББФ)
  3. Компонента дизельного топлива
  4. Легкого каталитического газойля

Используемое сырье

В качестве сырья на установку поступает гидроочищенный вакуумный газойль.

Технологическая схема

Сырье перекачивается насосами через блок теплообменников, где происходит нагревание до 220 °С. Далее происходит разделение на 8 потоков, которые направляются в печь, где происходит нагрев до температуры 250-260 °С.

Реакторный блок

Далее поток поступает в слой циркулирующего катализатора реакторного блока через райзер – прямоточный реактор. Происходит смешение потока и катализотора с температурой 530 °С.

Так как температура составляет 530 °С, то происходит реакция крекинга с образованием продуктов реакции, находящихся в газообразном состоянии.

Катализатор – микросферический цеолитсодержащий алюмосиликат.

Далее образовавшаяся смесь продуктов реакции и катализатора перемещается в реактор, где установлены циклоны 1 и 2 ступени.

Циклоны

В циклонах 1 ступени, более тяжелый катализатор, за счет центробежной силы, отбрасывается к стенкам устройства и направляется вниз реактора, а газообразные продукты реакции направляются во вторую ступень.

Ступень тонкой очистки – оставшиеся продукты реакции переходят во вторую ступень циклонов тонкой очистки. Где происходит аналогичный процесс.

При этом, катализатор ссыпается вниз реактора, куда подается пар для того, что бы отделить принесенные ценные для нефтепереработки углеводороды. На поверхности катализатора откладывается кокс – побочный продукт.

Очищенный от катализатора продукт в состоянии парогазовой смеси через верх реактора уходит на блок нагревательно – фракционирующей части (НФЧ) для последующего разделения.

После отделения от продукта катализатор попадает в транспортную линию, куда подается воздух для его транспортировки в регенератор. В регенераторе происходит выжег кокса с поверхности катализатора при температуре 600 °С, поскольку при такой температуре кокс самовоспламеняется.

Дымовые газы, пройдя две ступени циклонов, попадают в котел-утилизатор для выработки пара 15 атмосфер.

Отбившийся при этом катализатор спускается вниз регенератора, ссыпается в хоппер – бункер для предварительного сбора катализатора. А далее через шиберную задвижку подается на реакцию с сырьем в райзер.

За счет подачи воздуха от воздуходувки происходит движение катализатора между реактором и регенератором. А между регенератором и реактором за счет перепада давления.

Парогазовая смесь, которая образовалась в процессе реакции, сверху реактора направляется вниз фракционирующей колонны, где проходит разделение.

При этом в кубе колонны задерживается тяжелый каталитический газойль с температурой 350 °С, откуда насосами одна часть выводится из колонны, а вторая через блок теплообменников возвращается в колонну в качестве орошения для охлаждения колонны и улавливания катализатора из продуктов реакции.

Из средней части колонны выводится легкий каталитический газойль, являющийся компонентом дизельного топлива. Он проходит через стриппинг, в который подается пар, отпаренный каталитический газойль выводится с установки.

Сверху фракционирующей колонны выводятся:

  1. Сухой газ
  2. Пропан пропиленовая фракция
  3. Бутан бутиленовая фракция
  4. Бензин

Все продукты реакции, попадая в АВЗ и водяные охладители – охлаждаются и с температурой 30-45 градусов Цельсия попадают в трехфазный сепаратор. Здесь происходит разделение на воду, бензин и газ.

Сепаратор: разделение на воду, бензин и газ

Часть бензина возвращается в колонну, а другая часть направляется на блок стабилизации бензина. Где идет отделение газа от бензина.

Сверху сепаратора смесь газов попадает на блок очистки в аппарат для поглощения газов (абсорбер), для отделения от сероводорода.

В верхнюю часть колонны подается метилдиэтаноламин (МДЭА), который улавливает сероводород и с помощью насосов выводится на утилизацию.

После очистки от сероводорода, газ уходит на прием газовых компрессоров. Далее идет процесс охлаждения и конденсации жирного газа в АВЗ. Далее он снова направляется в сепаратор, в котором через насосы уходит в абсорбер, туда же идет газ сверху сепаратора и бензин.

Сверху в абсорбер подается стабильный бензин установки. Куб колонны подогревается с помощью термосифонных кипятильников. Сверху абсорбера уходит сухой газ в заводскую сеть. Деэтанизированный бензин, в котором содержатся ББФ и ППФ уходит снизу абсорбера и поступает в колонну стабилизации.

Отсюда снизу уходит депопронизированный бензин, а ППФ уходит сверху, охлаждаясь в АВЗ, теплообменниках. Пройдя через сепаратор, часть уходит в колонну в качестве орошения, а часть выводится с установки.

Деэтанизированный и депропанизированный бензин так же отправляются в колонну стабилизации. Здесь ББФ уходит сверху, при этом охлаждаясь в АВЗ и теплообменниках. После прохождения сепаратора, часть в качестве орошения уходит в колонну, а часть выводится с установки.

Снизу колонны выводится товарный бензин с октановым числом 92 по исследовательскому методу.

Видео

источник