Меню Рубрики

Установки пгу принцип работы

Принцип действия и технические характеристики ПГУ, работающей по утилизационной схеме

Парогазовая установка ПГУ является комбинированной установкой, состоящей из ГТУ, котла – утилизатора (КУ) и паровой турбины (ПТ). Реализация парового и газового циклов осуществляется в раздельных контурах, т. е., при отсутствии контакта между продуктами сгорания и парожидкостным рабочим телом. Взаимодействие рабочих тел осуществляется только в форме теплообмена в теплообменных аппаратах поверхностного типа.

Использование парогазовых установок является одним из возможных и перспективных направлений снижения топливно – энергетических затрат.

ПГУ термодинамически удачно объединяют в себе параметры ГТУ и паросиловых установок:

— ГТУ работают в зоне повышенных температур рабочего тела;

— паросиловые – приводятся в действие уже отработавшими, уходящими из турбины продуктами сгорания, т.е. выполняют роль утилизаторов и используют бросовую энергию.

КПД установки повышается в результате термодинамической надстройки высокотемпературного газового цикла паровым циклом, что сокращает потери теплоты с уходящими газами в газовой турбине.

Таким образом, ПГУ можно рассматривать как третий этап усовершенствования турбинных агрегатов. ПГУ являются перспективными двигателями, как высокоэкономичные, с малыми капиталовложениями. Отличные качества парогазовых установок определили области их применения. ПГУ широко применяются в энергетике и др. областях ТЭК.

Сдерживает широкое применение таких установок отсутствие единой точки зрения о наиболее рациональных направлениях утилизации тепла ГТУ.

В настоящее время перспективной схемой ПГУ для использования на МГ также является чисто утилизационная схема ПГУ с полной надстройкой цикла, в которой парогенератор обогревается только отходящими газами газовой турбины (рис. 6.1).

По этой схеме продукты сгорания ГТУ после турбины низкого давления (ТНД) поступают в котел-утилизатор (КУ) для выработки пара высокого давления. Получаемый пар из КУ поступает в паровую турбину (ПТ), где расширяясь, совершает полезную работу, идущую на привод электрогенератора или нагнетателя. Отработанный пар после ПТ поступает в конденсатор К, где конденсируется и затем питательным насосом (ПН) снова подается в котел – утилизатор. Термодинамический цикл парогазовой установки приведен на рис. 6.2. Высокотемпературный газовый цикл ГТУ начинается с процесса сжатия воздуха в осевом компрессоре: 1 → 2. В камере сгорания (а также в регенераторе, если он есть) осуществляется подвод теплоты 2 → 3; генерированные продукты сгорания поступают в газовую турбину, где расширяясь, совершают работу, процесс 3 → 4; и наконец, отработавшие газы отдают свое тепло в котле утилизаторе, нагревая воду и пар, 4 → 5. Остаток низкотемпературного тепла остается неиспользованным и передается в окружающую среду, 5 → 1.

Рисунок 6.1 — Принципиальная схема ПГУ с котлом – утилизатором

Рисунок 6.2 — Схема цикла парогазовой установки в координатах Т-S

Парогазовый цикл образован последовательностью процессов: 1′ – 2′ — 3′ – 4′- 5′ – 1′ (рис. 6.2). Условно цикл начинается процесса 1′ – 2′ –подвода теплоты в экономайзере. Вода, поступившая из конденсатора, имеет низкую температуру, равную 39 °С (при давлении в конденсаторе Рнп = 0,007 МПа). Нагревается она до температуры кипения, порядка 170…210 °С, при постоянном давлении, соответствующем рабочему давлению котла 0,8…2,0 МПа. 2′ – 3′ – процесс испарения воды в испарителе и превращения ее в насыщенный пар. 3′ – 4′ – перегрев пара в перегревателе; 4′ – 5′ – процесс расширения пара в паровой турбине с совершением работы и потерей температуры; 5′ – 1′ – пар конденсируется в конденсаторе К, и образовавшаяся вода вновь подается в котел — утилизатор КУ. Цикл замыкается.

Мощность собственно паровой турбины (ПТ) зависит от действительного теплоперепада, или энтальпии, по паровой турбине и расхода пара. Расход пара и параметры пара определяются работой котла-утилизатора. Принципиальная схема котла – утилизатора показана на рис. 6.3.

Котел – утилизатор – это паровой котел с принудительной циркуляцией, не имеющий собственной топки и обогреваемый уходящими газами какой – либо энергетической установки.

Поэтому бросовой теплоты выхлопных газов ГТУ, с температурой порядка 400 °С, вполне достаточно для эффективной работы утилизационных установок.

По ходу котла устанавливаются последовательно теплообменные аппараты: водяной экономайзер «Э», испаритель «И» и пароперегреватель «П».

Водяной экономайзер — это теплообменник, в котором вода подогревается низкотемпературными горячими газами (продуктами сгорания) перед ее подачей в барабан котла (сепаратор).

Генерация пара производится в ходовой части котла следующим образом. Питательная вода, предварительно нагретая в экономайзере до температуры кипения уходящими газами, поступает в барабан котла. Температура горячих газов в хвостовой части котла не должна опускаться ниже 120 °С *.

В режиме генерации пара вода циркулирует через испаритель. В испарителе идет интенсивное поглощение тепла, за счет которого и происходит парообразование. Процесс парообразования в испарителе происходит при температуре кипения питательной воды, соответствующей определенному давлению насыщения.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9866 — | 7529 — или читать все.

источник

Фотографии строительства главного корпуса ПГУ

Фотографии других объектов ПГУ:

Парогазовые установки (ПГУ)

Парогазовая установка — электрогенерирующая станция, служащая для производства электроэнергии. Отличается от паросиловых и газотурбинных установок повышенным КПД.

Парогазовые установки производят электричество и тепловую энергию. Тепловая энергия используется для дополнительного производства электричества.

Принцип действия и устройство парогазовой установки (ПГУ)

Парогазовая установка состоит из двух отдельных блоков: паросилового и газотурбинного. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива.

Топливом может служить как природный газ, так и продукты нефтяной промышленности (например мазут, дизельное топливо). На одном валу с турбиной находится генератор, который за счет вращения ротора вырабатывает электрический ток.

Проходя через газовую турбину, продукты сгорания отдают лишь часть своей энергии и на выходе из неё, когда их давление уже близко к наружному и работа не может быть ими совершена, все ещё имеют высокую температуру. С выхода газовой турбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500°C позволяет получать перегретый пар при давлении около 100 атмосфер). Паровая турбина приводит в действие второй электрогенератор.

Существуют парогазовые установки, у которых паровая и газовая турбины находятся на одном валу, в этом случае устанавливается только один генератор. Также часто пар с двух блоков ГТУ—котёл-утилизатор направляется в одну общую паросиловую установку.

Иногда парогазовые установки создают на базе существующих старых паросиловых установок. В этом случае уходящие газы из новой газовой турбины сбрасываются в существующий паровой котел, который соответствующим образом модернизируется. КПД таких установок, как правило, ниже, чем у новых парогазовых установок, спроектированных и построенных «с нуля».

На установках небольшой мощности поршневая паровая машина обычно эффективнее, чем лопаточная радиальная или осевая паровая турбина, и есть предложение применять современные паровые машины в составе ПГУ.

Преимущества и недостатки парогазовых установок (ПГУ)

Парогазовые установки (ПГУ) — относительно новый тип электростанций, работающих на газе, жидком или твердом топливе. Парогазовые установки (ПГУ) предназначены для получения максимального количества электроэнергии.

Общий электрический КПД парогазовой установки составляет

58-64%. Для сравнения, у работающих отдельно паросиловых установок КПД обычно находится в пределах 33-45%, в стандартных газотурбинных установках КПД составляет

источник

Энергодиспетчер

Оперативная работа в электроэнергетике

Принцип работы ПГУ

Опубликовано: admin-zeleniy 6 января 2013

Продолжим цикл образовательных статей. Сегодня будем знакомится с принципом работы парогазовой установки (ПГУ) на примере Киришской ГРЭС.
Это довольно интересная ГРЭС с богатой историей, ознакомиться с которой вы можете посетив страничку в Википедии .

Примечательна она ещё и тем, что на ней установлен и успешно эксплуатируется самый мощный парогазовый блок ПГУ-800 на территории РФ.

Проектом была предусмотрена модернизация установленного в 1975 году энергоблока мощностью 300 МВт ст. №6 для его последующей работы в парогазовом цикле с двумя газовыми турбинами SGT5-4000 производства компании Siemens (279 МВт х 2) с двумя горизонтальными трехконтурными котлами-утилизаторами производства ОАО «ЭМАльянс».

Владелец ГРЭС — ОГК-2, выпустил презентационный ролик посвящённый электростанции, в котором очень наглядно разъяснен принцип работы этой ПГУ, да и в целом понятна суть работы такого цикла.

ПГУ-800 Киришская ГРЭС

(самый мощный парогазовый блок ПГУ-800 на территории РФ)

На следующем видеоролике наглядно представлена работа установки ПГУ выполненной в одновальном варианте.

Газовая турбина и паровая находятся на одном валу. При данной схеме газовая турбина может работать без паровой, а наоборот нет.

В этом видео представлен проект Череповецкой ГРЭС, который планируется претворить в жизнь в 2014 году.

По такому принципу выполнен и введен в эксплуатацию в 2011 году блок ПГУ-399 на Минской ТЭЦ-5.

Читайте также:  Установка letsencrypt ubuntu nginx

Череповецкая ГРЭС и проект ПГУ 420

(ПГУ в одновальном варианте)

На следующем ролике представлен проект блока ПГУ Рязанской ГРЭС. Это уникальный проект выполненный в виде раздельной работы газовой турбины и паровой, со сбросом отработнных газов в паровой котёл через подовые горелки, пар из которого направляется в паровую турбину типа К. Котёл дополнительно оснащен газовыми горелками, которые позволяют эксплуатировать блок котёл-турбина без газовой турбины.

ПГУ-420 Рязанская ГРЭС

Если возникнут вопросы, пожалуйста задавайте в комментариях, будем разбираться и отвечать.

источник

Установки пгу принцип работы

Парогазовая установка состоит из двух отдельных установок: паросиловой и газотурбинной. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как природный газ, так и продукты нефтяной промышленности (мазут, солярка). На одном валу с турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из газотурбины все ещё имеют высокую температуру. С выхода из газотурбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 градусов по Цельсию позволяет получать перегретый пар при давлении около 100 атмосфер). Паровая турбина приводит в действие второй электрогенератор.

Существуют парогазовые установки, у которых паровая и газовая турбины находятся на одном валу, в этом случае устанавливается только один генератор.

Иногда парогазовые установки создают на базе существующих старых паросиловых установок. В этом случае уходящие газы из новой газовой турбины сбрасываются в существующий паровой котел, который соответствующим образом модернизируется. КПД таких установок, как правило, ниже, чем у новых парогазовых установок, спроектированных и построенных «с нуля».

Преимущества ПГУ

  • Парогазовые установки позволяют достичь электрического КПД более 60 %. Для сравнения, у работающих отдельно паросиловых установок КПД обычно находится в пределах 33-45 %, для газотурбинных установок — в диапазоне 28-42 %
  • Низкая стоимость единицы установленной мощности
  • Парогазовые установки потребляют существенно меньше воды на единицу вырабатываемой электроэнергии по сравнению с паросиловыми установками
  • Короткие сроки возведения (9-12 мес.)
  • Нет необходимости в постоянном подвозе топлива ж/д или морским транспортом
  • Компактные размеры позволяют возводить непосредственно у потребителя (завода или внутри города), что сокращает затраты на ЛЭП и транспортировку эл. энергии
  • Более экологически чистые в сравнении с паротурбинными установками

Недостатки ПГУ

  • Низкая единичная мощность оборудования (160—972,1 [источник не указан 271 день] МВт на 1 блок), в то время как современные ТЭС имеют мощность блока до 1200 МВт, а АЭС 1200—1600 МВт.
  • Необходимость осуществлять фильтрацию воздуха, используемого для сжигания топлива.

Применение на электростанциях

Несмотря на то, что преимущества парогазового цикла были впервые доказаны еще в 1950-х годах советским академиком С. А. Христиановичем [источник не указан 537 дней] , этот тип энергогенерирующих установок не получил в России широкого применения. В СССР были построены несколько экспериментальных ПГУ. Примером могут служить энергоблоки мощностью 170 МВт на Невинномысской ГРЭС и мощностью 250 МВт на Молдавской ГРЭС. В последние годы в России введены в эксплуатацию ряд мощных парогазовых энергоблоков. Среди них:

  • 2 энергоблока мощностью 450 МВт каждый на Северо-Западной ТЭЦ и 1 энергоблок мощностью 450 МВт на Южной ТЭЦ в Санкт-Петербурге
  • 2 энергоблока мощностью 450 МВт каждый на Калининградской ТЭЦ-2[1]
  • 2 ПГУ мощностью 220 МВт каждая на Тюменская ТЭЦ-1[2]
  • 2 ПГУ мощностью 450 МВт на ТЭЦ-27[3][4] и 1 ПГУ на ТЭЦ-21[5] в Москве
  • 1 ПГУ мощностью 325 МВт на Ивановской ГРЭС [6]
  • 3 энергоблока на Сочинской ТЭС. Два энергоблока мощностью 39 МВт каждый (1-я очередь строительства). Один энергоблок 80 МВт (2-я очередь строительства) [7] .
  • 2 энергоблока мощностью 121 МВт каждый на ТЭС Международная (г. Москва, Ситиэнерго) [8]
  • 1 ПГУ мощностью 400 МВт на Шатурской ГРЭС[9]
  • 1 ПГУ мощностью 420 МВт на Краснодарская ТЭЦ[10]
  • 1 ПГУ мощностью 230 МВт на Челябинской ТЭЦ-3[11]
  • 1 ПГУ мощностью 410 МВт на Среднеуральской ГРЭС ОАО «Энел ОГК-5» — Производство электроэнергии в Свердловской области
  • 1 ПГУ мощностью 410 МВт на Невинномысской ГРЭС ОАО «Энел ОГК-5»
  • 1 ПГУ мощностью 220 МВт на ТЭЦ-12

По состоянию на середину 2011 г. в России в различных стадиях проектирования или строительства находятся несколько ПГУ.

По сравнению с Россией, в странах Западной Европы и США парогазовые установки стали широко применяться раньше. На западных электростанциях, использующих в качестве топлива природный газ, установки такого типа используются гораздо чаще.

источник

Принцип работы пгу

Принцип действия и технические характеристики ПГУ, работающей по утилизационной схеме

Парогазовая установка ПГУ является комбинированной установкой, состоящей из ГТУ, котла – утилизатора (КУ) и паровой турбины (ПТ). Реализация парового и газового циклов осуществляется в раздельных контурах, т. е., при отсутствии контакта между продуктами сгорания и парожидкостным рабочим телом. Взаимодействие рабочих тел осуществляется только в форме теплообмена в теплообменных аппаратах поверхностного типа.

Использование парогазовых установок является одним из возможных и перспективных направлений снижения топливно – энергетических затрат.

ПГУ термодинамически удачно объединяют в себе параметры ГТУ и паросиловых установок:

— ГТУ работают в зоне повышенных температур рабочего тела;

— паросиловые – приводятся в действие уже отработавшими, уходящими из турбины продуктами сгорания, т.е. выполняют роль утилизаторов и используют бросовую энергию.

КПД установки повышается в результате термодинамической надстройки высокотемпературного газового цикла паровым циклом, что сокращает потери теплоты с уходящими газами в газовой турбине.

Таким образом, ПГУ можно рассматривать как третий этап усовершенствования турбинных агрегатов. ПГУ являются перспективными двигателями, как высокоэкономичные, с малыми капиталовложениями. Отличные качества парогазовых установок определили области их применения. ПГУ широко применяются в энергетике и др. областях ТЭК.

Сдерживает широкое применение таких установок отсутствие единой точки зрения о наиболее рациональных направлениях утилизации тепла ГТУ.

В настоящее время перспективной схемой ПГУ для использования на МГ также является чисто утилизационная схема ПГУ с полной надстройкой цикла, в которой парогенератор обогревается только отходящими газами газовой турбины (рис. 6.1).

По этой схеме продукты сгорания ГТУ после турбины низкого давления (ТНД) поступают в котел-утилизатор (КУ) для выработки пара высокого давления. Получаемый пар из КУ поступает в паровую турбину (ПТ), где расширяясь, совершает полезную работу, идущую на привод электрогенератора или нагнетателя. Отработанный пар после ПТ поступает в конденсатор К, где конденсируется и затем питательным насосом (ПН) снова подается в котел – утилизатор. Термодинамический цикл парогазовой установки приведен на рис. 6.2. Высокотемпературный газовый цикл ГТУ начинается с процесса сжатия воздуха в осевом компрессоре: 1 → 2. В камере сгорания (а также в регенераторе, если он есть) осуществляется подвод теплоты 2 → 3; генерированные продукты сгорания поступают в газовую турбину, где расширяясь, совершают работу, процесс 3 → 4; и наконец, отработавшие газы отдают свое тепло в котле утилизаторе, нагревая воду и пар, 4 → 5. Остаток низкотемпературного тепла остается неиспользованным и передается в окружающую среду, 5 → 1.

Рисунок 6.1 — Принципиальная схема ПГУ с котлом – утилизатором

Рисунок 6.2 — Схема цикла парогазовой установки в координатах Т-S

Парогазовый цикл образован последовательностью процессов: 1′ – 2′ — 3′ – 4′- 5′ – 1′ (рис. 6.2). Условно цикл начинается процесса 1′ – 2′ –подвода теплоты в экономайзере. Вода, поступившая из конденсатора, имеет низкую температуру, равную 39 °С (при давлении в конденсаторе Рнп = 0,007 МПа). Нагревается она до температуры кипения, порядка 170…210 °С, при постоянном давлении, соответствующем рабочему давлению котла 0,8…2,0 МПа. 2′ – 3′ – процесс испарения воды в испарителе и превращения ее в насыщенный пар. 3′ – 4′ – перегрев пара в перегревателе; 4′ – 5′ – процесс расширения пара в паровой турбине с совершением работы и потерей температуры; 5′ – 1′ – пар конденсируется в конденсаторе К, и образовавшаяся вода вновь подается в котел — утилизатор КУ. Цикл замыкается.

Мощность собственно паровой турбины (ПТ) зависит от действительного теплоперепада, или энтальпии, по паровой турбине и расхода пара. Расход пара и параметры пара определяются работой котла-утилизатора. Принципиальная схема котла – утилизатора показана на рис. 6.3.

Котел – утилизатор – это паровой котел с принудительной циркуляцией, не имеющий собственной топки и обогреваемый уходящими газами какой – либо энергетической установки.

Поэтому бросовой теплоты выхлопных газов ГТУ, с температурой порядка 400 °С, вполне достаточно для эффективной работы утилизационных установок.

По ходу котла устанавливаются последовательно теплообменные аппараты: водяной экономайзер «Э», испаритель «И» и пароперегреватель «П».

Читайте также:  Установка распредвала газель 4216

Водяной экономайзер — это теплообменник, в котором вода подогревается низкотемпературными горячими газами (продуктами сгорания) перед ее подачей в барабан котла (сепаратор).

Генерация пара производится в ходовой части котла следующим образом. Питательная вода, предварительно нагретая в экономайзере до температуры кипения уходящими газами, поступает в барабан котла. Температура горячих газов в хвостовой части котла не должна опускаться ниже 120 °С *.

В режиме генерации пара вода циркулирует через испаритель. В испарителе идет интенсивное поглощение тепла, за счет которого и происходит парообразование. Процесс парообразования в испарителе происходит при температуре кипения питательной воды, соответствующей определенному давлению насыщения.

КамАЗ-5320, ПГУ: устройство и принцип работы

Что такое устройство ПГУ КамАЗа-5320? Этот вопрос интересует многих новичков. Данная аббревиатура может привести в недоумение несведущего человека. На самом деле ПГУ – это пневматический гидравлический усилитель руля. Рассмотрим особенности этого устройства, его принцип работы и типы обслуживания, включая ремонт.

  • 1 – гайка сферическая с контргайкой.
  • 2 – поршневой толкатель деактиватора сцепления.
  • 3 – предохранительный чехол.
  • 4 – поршень выключения сцепления.
  • 5 – задняя часть остова.
  • 6 – комплексный уплотнитель.
  • 7 – следящий поршень.
  • 8 – клапан перепускной с колпаком.
  • 9 – диафрагма.
  • 10 – клапан впускной.
  • 11 – выпускной аналог.
  • 12 – поршень пневматического типа.
  • 13 – сливная пробка (для конденсата).
  • 14 – фронтальная часть корпуса.
  • «А» – подвод рабочей жидкости.
  • «Б» – поступление сжатого воздуха.

Предназначение и устройство

Грузовой автомобиль – достаточно массивная и крупногабаритная техника. Для ее управления требуется недюжинная физическая сила и выносливость. Устройство ПГУ КамАЗа-5320 позволяет облегчить регулировку транспортного средства. Это небольшое, но полезное устройство. Оно дает возможность не только упростить труд водителя, но и повышает производительность работ.

Рассматриваемый узел состоит из следующих элементов:

  • Поршневого толкателя и регулировочной гайки.
  • Пневматического и гидравлического поршня.
  • Пружинного механизма, редуктора с крышкой и клапаном.
  • Седла диафрагмы, контрольного винта.
  • Перепускного клапана и поршневого следящего приспособления.

Особенности

Корпусная система усилителя состоит из двух элементов. Фронтальная часть изготавливается из алюминия, а задний аналог – из чугуна. Между деталями предусмотрена специальная прокладка, которая играет роль уплотнителя и диафрагмы. Следящий механизм регулирует изменение давления воздуха на пневмопоршень в автоматическом режиме. В данное приспособление также входит уплотнительная манжета, пружины с диафрагмами, а также клапаны на впуск и выпуск.

Принцип действия

При нажатии педали сцепления под давлением жидкости устройство ПГУ КамАЗа-5320 давит на шток и поршень следящего приспособления, после чего конструкция вместе с диафрагмой смещается до момента открытия впускного клапана. Затем воздушная смесь из пневматической системы автомобиля подается к пневмопоршню. В результате суммируются усилия обоих элементов, что позволяет отвести вилку и выключить сцепление.

После того, как нога убирается с педали сцепления, давление подводящей магистральной жидкости падает до нулевого показателя. Вследствие этого ослабевает нагрузка на гидравлические поршни исполнительного и следящего механизма. По этой причине поршень гидравлического типа начинает перемещаться в обратном направлении, закрывая впускной клапан и блокируя поступление давления из ресивера. Нажимная пружина, воздействуя на следящий поршень, отводит его в исходную позицию. Воздух, изначально реагирующий с пневматическим поршнем, выводится в атмосферу. Шток с обоими поршнями возвращается в начальное положение.

Производство

Устройство ПГУ КамАЗа-5320 подходит для многих модельных модификаций этого производителя. Большинство старых и новых тягачей, самосвалов, военных вариантов оснащается пневмогидравлическим усилителем руля. Современные модификации, производимые различными компаниями, имеют следующие обозначения:

  • Запчасти КамАЗ (ПГУ) производства ОАО «КамАЗ» (номер по каталогу 5320) с вертикальным размещением следящего приспособления. Устройство над корпусом цилиндра используется на вариациях под индексом 4310, 5320, 4318 и некоторых других.
  • WABCO. ПГУ под этой маркой производятся в США, отличаются надежностью и компактными габаритами. Эта комплектация оборудована системой слежения за состоянием накладок, уровень износа которых доступно определить без демонтажа силового агрегата. Большинство грузовиков с коробкой передач серии 154 оснащаются именно этим пневмогидравлическим оборудованием.
  • Пневмогидроусилитель сцепления «ВАБКО» для моделей с КПП типа ZF.
  • Аналоги, выпускаемые на заводе в Украине (Волчанск) или Турции (Yumak).

В плане выбора усилителя специалисты рекомендуют приобретать такую же марку и модель, которая была изначально установлена на машине. Это позволит обеспечить максимально правильное взаимодействие между усилителем и механизмом сцепления. Прежде чем менять узел на новую вариацию, проконсультируйтесь со специалистом.

Обслуживание

Для поддержания рабочего состояния узла осуществляют следующие работы:

  • Визуальный осмотр, позволяющий обнаружить видимые утечки воздуха и жидкости.
  • Подтягивание фиксирующих болтов.
  • Регулировку свободного хода толкателя при помощи сферической гайки.
  • Доливку рабочей жидкости в баке системы.

Стоит отметить, что при регулировке ПГУ КамАЗа-5320 модификации Wabco, износ накладок сцепления легко просматривается на специальном указателе, выдвигаемом под воздействием поршня.

Разборка

Данная процедура при необходимости выполняется в следующем порядке:

  • Задняя часть корпуса зажимается в тисках.
  • Откручиваются болты. Снимаются шайбы и крышка.
  • Изымается клапан из корпусной части.
  • Демонтируется фронтальный остов вместе с пневматическим поршнем и его мембраной.
  • Снимаются: диафрагма, следящий поршень, стопорное кольцо, элемент выключения сцепления и корпус уплотнителя.
  • Удаляется перепускной клапанный механизм и люк с выпускным уплотнителем.
  • Остов вынимается из тисов.
  • Демонтируется упорное кольцо задней части корпуса.
  • Стержень клапана освобождается от всех конусов, шайб и седла.
  • Следящий поршень снимается (предварительно необходимо убрать стопор и прочие сопутствующие элементы).
  • Из фронтальной части корпуса извлекается пневматический поршень, манжета и стопорное кольцо.
  • Затем все детали промываются в бензине (керосине), обдаются сжатым воздухом и проходят этап дефектации.

ПГУ КамАза-5320: неисправности

Чаще всего в рассматриваемом узле возникают неполадки следующего характера:

  • Сжатый воздушный поток поступает в недостаточном количестве либо совсем отсутствует. Причина неисправности – разбухание впускного клапана пневматического усилителя.
  • Заклинивание следящего поршня на пневмоусилителе. Вероятнее всего, причина кроется в деформации уплотнительного кольца или манжеты.
  • Наблюдается «провал» педали, что не позволяет полностью выключить сцепление. Эта неполадка свидетельствует о попадании воздуха в гидравлический привод.

Ремонт ПГУ КамАЗа-5320

Проводя дефектовку элементов узла, особое внимание следует обратить на такие моменты:

  • Проверку уплотнительных деталей. Не допускается наличие на них деформаций, разбухания и трещин. В случае нарушения эластичности материала, элемент подлежит замене.
  • Состояние рабочих поверхностей цилиндров. Контролируется внутренний зазор диаметра цилиндров, который по факту должен соответствовать нормативу. На деталях не должно быть вмятин или трещин.

В ремонтный комплект ПГУ входят такие запчасти КамАЗа:

  • Защитный чехол заднего корпуса.
  • Конус и диафрагма редуктора.
  • Манжеты для пневматического и следящего поршня.
  • Колпак перепускного клапана.
  • Стопорные и уплотнительные кольца.

Перед монтажом все детали рекомендуется обработать смазкой типа «Литол».

Замена и установка

Для замены рассматриваемого узла выполняют следующие манипуляции:

  • Проводится стравливание воздуха из ПГУ КамАЗа-5320.
  • Сливается рабочая жидкость либо перекрывается слив при помощи пробки.
  • Демонтируется прижимная пружина вилки рычага включения сцепления.
  • От устройства отсоединяются подводящие воду и воздух трубы.
  • Откручиваются финты крепления к картеру, после чего агрегат демонтируется.

После замены деформированных и негодных элементов, система проверяется на герметичность в гидравлической и пневматической части. Сборка производится следующим образом:

  • Совмещают все фиксирующие отверстия с гнездами в картере, после чего закрепляется усилитель при помощи пары болтов с пружинными шайбами.
  • Подсоединяется гидравлический шланг и воздушный трубопровод.
  • Монтируется оттяжный пружинный механизм вилки выключения узла сцепления.
  • В компенсационный резервуар наливают тормозную жидкость, после чего прокачивают систему гидравлического привода.
  • Проверяют повторно герметичность соединений на предмет подтекания рабочей жидкости.
  • Регулируется, при необходимости, величина зазора между торцевой частью крышки и ограничителем хода активатора делителя передач.

Принципиальная схема подсоединения и размещения элементов узла

Принцип работы ПГУ КамАЗа-5320 проще понять, изучив представленную ниже схему с пояснениями.

  • а – стандартная схема взаимодействия частей привода.
  • б – расположение и фиксация элементов узла.
  • 1 – педаль блока сцепления.
  • 2 – основной цилиндр.
  • 3 – цилиндрическая часть пневматического усилителя.
  • 4 – следящий механизм пневматической части.
  • 5 – воздухопровод.
  • 6 – основной гидроцилиндр.
  • 7 – выключающая муфта с подшипником.
  • 8 – рычаг.
  • 9 – шток.
  • 10 – шланги и трубы привода.

Рассматриваемый узел имеет довольно понятное и простое устройство. Тем не менее его роль при управлении грузовым автомобилем очень значительна. Использование ПГУ позволяет существенно облегчить управление машиной и повысить эффективность работы транспортного средства.

ПГУ сцепления — прокачка за 2 МИНУТЫ одним человеком

Пишет svxab в своём блоге.

ПГУ прокачать пробовали многие владельцы грузовиков, иные даже не знают что это за головняк.

Решение простое и дешевое не требующее сверхъестественного.1 Бутылка 1.5 литра2 Шланг %6мм L-2 метра3 Два соска для дисков легковых — золотники удалить4 Хомуты — пластиковые для проводки, тонкие5 Тормазухи — достаточное количество для заполнения всей системы и расширительного бачка, с первой попыпки

Читайте также:  Установка задних подголовников на калину седан

Думаю фото установки говорит за себя, про её изготовление коментарии не мужны.

Система слита и промыта свежой тормозухой(вырезан от грузовой камеры сосок так чтобы он закрывал горловину расширительного бачка и воздухом давим 3-4 атм)

Хочу себе поставить т.к очень тугая педаль сцепления по электрике много проблем?

Парогазовые установки (стр. 1 из 17)

Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии

Экономическая целесообразность форсированного внедрения ПТУ и ГТУ при обновлении тепловых электростанций

Комплексный подход к строительству и реконструкции электростанций с применением ПУ и ПГУ

Отработка технических решений на собственных электростанциях – залог надежной работы оборудования у заказчика

Конденсационная парогазовая электростанция для надежного энергоснабжения промышленных потребителей

Реконструкция паротурбинных электростанций — эффективный путь перевооружения энергетики

Опыт эксплуатации газопаротурбинной установки ГПУ-16К с впрыском пара Теплофикационные парогазовые установки для замены устаревшего оборудования ТЭЦ ОАО «Ленэнерго»

Повышение эксплуатационных характеристик энергетических установок

Сравнение паросилового блока с Т-265 и энергоблока с двумя ПГУ-170Т

Масштабы внедрения ПГУ и ГТУ в среднесрочной перспективе

В любой стране энергетика является базовой отраслью экономики, стратегически важной для государства. От её состояния и развития зависят соответствующие темпы роста других отраслей хозяйства, стабильность их работы и энерговооруженность. Энергетика создает предпосылки для применения новых технологий, обеспечивает наряду с другими факторами современный уровень жизни населения. На независимости страны от внешних, импортируемых энергоресурсов, также как и на развитом оборонном вооруженном комплексе основывается высокая позиция государства на международной политической арене.

В промышленности электрическая энергия из тепловой получается путем промежуточного преобразования её в механическую работу. Превращение тепла в электричество с достаточно высоким кпд без промежуточного преобразования его в механическую работу было бы крупным шагом вперёд. Тогда отпала бы надобность в тепловых электростанциях, использовании на них тепловых двигателей, которые имеют относительно низкий кпд, весьма сложны и требуют довольно квалифицированного ухода при эксплуатации. Современная техника пока не позволяет создать более или менее мощные установки для получения электричества непосредственно из тепла. Все установки такого типа пока могут работать или только кратковременно, или при крайне малых мощностях, или при низких кпд, или зависят от временных факторов, таких как погодные условия, время суток, и т.п. В любом случае они не могут гарантировать достаточную стабильность в энергоснабжении страны.

Поэтому на тепловых электростанциях нельзя обойтись без тепловых двигателей. Перспективное направлении развития энергетики связано с газотурбинными (ГТУ) и парогазовыми (ПГУ) энергетическими установками тепловых электростанций. Эти установки имеют особые конструкции основного и вспомогательного оборудования, режимы работы и управление. ПГУ на природном газе – единственные энергетические установки, которые в конденсационном режиме работы отпускают электроэнергию с электрическим кпд более 58% .

В энергетике реализован ряд тепловых схем ПГУ, имеющих свои особенности и различия в технологическом процессе. Происходит постоянная оптимизация как самих схем, так и улучшение технических характеристик её узлов и элементов. Основными показателями, характеризующими качество работы энергетической установки, являются её производительность (или кпд) и надёжность.

В этой работе особое внимание уделяется практической стороне вопроса, т.е. на сколько выгодно с экономической и экологической точки зрения использование ПГУ в энергетике.

Парогазовые установки ( ГОСТ 27240-87)

Парогазовые установки (в англоязычном мире используется название combined-cycle power plant) — сравнительно новый тип генерирующих станций, работающих на газе или на жидком топливе. Принцип работы самой экономичной и распространенной классической схемы таков. Устройство состоит из двух блоков: газотурбинной (ГТУ) и паросиловой (ПС) установок. В ГТУ вращение вала турбины обеспечивается образовавшимися в результате сжигания природного газа, мазута или солярки продуктами горения — газами. Образовавшиеся в камере сгорания газотурбинной установки продукты горения вращают ротор турбины, а та, в свою очередь, крутит вал первого генератора.

В первом, газотурбинном, цикле КПД редко превышает 38%. Отработавшие в ГТУ, но все еще сохраняющие высокую температуру продукты горения поступают в так называемый котел-утилизатор. Там они нагревают пар до температуры и давления (500 градусов по Цельсию и 80 атмосфер), достаточных для работы паровой турбины, к которой подсоединен еще один генератор. Во втором, паросиловом, цикле используется еще около 20% энергии сгоревшего топлива. В сумме КПД всей установки оказывается около 58%. Существуют и некоторые другие типы комбинированных ПГУ, но погоды в современной энергетике они не делают. Как правило, такие системы используются генерирующими компаниями в случае, когда необходимо максимизировать производство электрической энергии. Когенерация в этом случае играет подчиненную роль и обеспечивается за счет отвода части тепла из паровой турбины. Паровые энергоблоки хорошо освоены. Они надежны и долговечны. Их единичная мощность достигает 800-1200 МВт, а коэффициент полезного действия (КПД), представляющий собой отношение произведенной электроэнергии к теплотворности использованного топлива, составляет до 40-41%, а на наиболее совершенных электростанциях за рубежом — 45-48%. Также уже длительное время в энергетике используются газотурбинные установки (ГТУ). Это двигатель совершенно иного типа. В ГТУ атмосферный воздух сжимается до 15-20 атмосфер, в нем топливо сжигается с образованием высокотемпературных (1200-1500 °С) продуктов сгорания, которые расширяются в турбине до атмосферного давления. Вследствие более высокой температуры турбина развивает примерно вдвое большую мощность, чем необходимо для вращения компрессора. Избыток ее используется для привода электрического генератора. За рубежом эксплуатируются ГТУ единичной мощностью 260-280 МВт с КПД 36-38%. Температура отработавших в них газов составляет 550-620 °С. Вследствие принципиальной простоты цикла и схемы стоимость газотурбинных установок существенно ниже, чем паровых. Они занимают меньше места, не нуждаются в охлаждении водой, быстро запускаются и изменяют режимы работы. ГТУ легче обслуживать и полностью автоматизировать.

Так как рабочей средой газовых турбин являются продукты сгорания, сохранять работоспособность деталей, которые омываются ими, можно, только используя чистые виды топлива: природный газ или жидкие дистилляты

ГТУ быстро развиваются, с повышением параметров, единичной мощности и КПД. За рубежом они освоены и эксплуатируются с такими же показателями надежности, как и паровые энергоблоки.

Разумеется, тепло отработавших в ГТУ газов может быть использовано. Проще всего это сделать путем подогрева воды для отопления или выработки технологического пара. Количество произведенного тепла оказывается несколько больше, чем количество электроэнергии, а общий коэффициент использования тепла топлива может достигать 85-90%.

Есть и другая, еще более привлекательная, возможность заставить это тепло работать. Из термодинамики известно, что КПД наиболее совершенного цикла теплового двигателя (его придумал Карно почти 200 лет назад) пропорционально отношению температур подвода и отвода тепла. В ГТУ подвод тепла происходит в процессе сгорания. Температура образующихся продуктов, которые являются рабочей средой турбин, не ограничивается стенкой (как в котле), через которую необходимо передавать тепло, и может быть существенно выше. Освоено охлаждение омываемых горячими газами деталей, позволяющее поддерживать их температуры на допустимом уровне.

В паровых энергоустановках температура перегретого пара не может превышать допустимую для металла труб котельных пароперегревателей и таких неохлаждаемых узлов, как паропроводы, коллекторы, арматура, — она составляет сейчас 540-565 °С, а в самых современных установках — 600-620 °С. Зато отвод тепла в конденсаторах паровых турбин осуществляется циркуляционной водой при температурах, близких к температуре окружающей среды.

Указанные особенности позволяют существенно повысить КПД производства электроэнергии путем объединения в одной парогазовой установке (ПГУ) высокотемпературного подвода (в ГТУ) и низкотемпературного отвода тепла (в конденсаторе паровой турбины). Для этого отработавшие в турбине газы подаются в котел-утилизатор, где генерируется и перегревается пар, поступающий затем в паровую турбину. Вращаемый ею электрический генератор при неизменном расходе топлива в камере сгорания ГТУ увеличивает выработку электроэнергии в 1,5 раза. В итоге КПД лучших современных ПГУ составляет 55-58%. Такие ПГУ называют бинарными потому, что в них осуществляется двойной термодинамический цикл: пар в котле-утилизаторе и работа паровой турбины производятся за счет тепла, подведенного в камере сгорания ГТУ и уже отработавшего в верхнем газотурбинном цикле.

С учетом всех достоинств ПГУ наиболее важной задачей для отечественной энергетики является перевод многочисленных паровых электростанций, работающих в основном на природном газе, в парогазовые.

Привлекательными особенностями таких ПГУ, помимо высоких КПД, являются умеренная удельная стоимость (в 1,5-2 раза ниже, чем у паровых энергоблоков близкой мощности), возможность сооружения за короткое (два года) время, вдвое меньшая потребность в охлаждающей воде, хорошая маневренность.

С учетом всех достоинств ПГУ наиболее важной задачей для отечественной энергетики является перевод многочисленных паровых электростанций, работающих в основном на природном газе, в парогазовые. При техническом перевооружении электростанций возможны два варианта создания бинарных ПГУ.

Описание работы и схемы ПГУ

Федеральное государственное бюджетное образовательное

Учреждение высшего профессионального образования

« Самарский государственный технический университет»

источник

Добавить комментарий