Меню Рубрики

Установки плазменной резки труб чпу

Резка труб плазмой. Технология и примеры оборудования

Резка труб плазменными труборезами с использованием специальных центраторов распространена сегодня практически повсеместно. Современный ассортимент станков для резки труб охватывает все необходимые для качественного раскроя трубного материала технологии.

Машины для резки труб могут быть мобильными, роботизированными, а также включающими в себя какие-либо этапы по постобработке.

С точки зрения качественного результата, основное отличие плазменных установок резки труб от классических труборезных машин на основе автогена и тому подобных технологий заключается в абсолютно чёткой обработке поверхности металла.

С точки зрения функциональности оборудования, плазменная резка труб также имеет свои отличия, заключающиеся в возможности осуществления вспомогательных операций – подготовке поверхности, зачистке шва, снятии фаски и разделывании кромки. Ещё одна отличительная особенность плазменного оборудования резки стальных труб – использование точных приводов, позволяющих ему перемещаться по трубе.

Благодаря своим широким возможностям, а также доступной стоимости, резка труб плазмой является одной из самых популярных технологий точной резки труб большого диапазона диаметров и практически любых сплавов.

Предлагаем посмотреть, как работает автоматическая линия плазменной резки труб с ЧПУ:

Как происходит резка металлических труб плазмой?

Оборудование для резки профильной трубы можно надевать на неё в любом месте, что, безусловно, расширяет возможности его применения. Инструмент для резки труб крепится к обрабатываемой поверхности при помощи специальных зажимов.

Для передвижения по трубе в конструкции оборудования для резки труб предусмотрены особые ролики, в то время как обжатие трубы обеспечивается металлической лентой центратора. Передвигать приспособление для резки труб плазмой можно как с помощью механического сдвига ручным способом, так и с помощью привода.

Кроме поступательного движения по трубе, труборез может и вращаться: такое движение управляется дистанционно при помощи простого пульта.

Знаете ли вы? География использования плазменных труборезов для труб весьма широка: правильное определение параметров их работы даёт возможность применять данное оборудование не только в европейской части России, но также на Крайнем Севере и Дальнем Востоке.

На практике, технология плазменной резки труб успешно реализуется в самом разном оборудовании. Для подтверждения этого факта в данной статье мы приведём несколько примеров плазменной резки от производителя Eckert.

Пример 1. Робот

Этот шести осевой робот позволяет перемещать горелку на расстояние до 2 м , что даёт возможность резки труб большого диаметра или продолжительной длины. Более того, инженерам фирмы Eckert удалось разработать сложную инновационную систему, которая позволяет выполнять на поверхности труб даже рез сложной формы, с одновременным выполнением фаски под сварку.

Совмещение устройств резки металлических труб 3D, современного программного обеспечения и технологического опыта позволило компании создать очень гибкую систему раскроя, используемую для подготовки сложных конструкций труб.

Пример 2. Универсальная система резки труб ESR

Системы ESR-300 представляют собой недорогое унифицированное решение по термической обработке труб и профилей резанием. В качестве дополнительной опции, систему Eckert можно использовать в комплекте с портальными системами ЧПУ. В отличие от обычных разрезных машин плазменной резки, система ESR даёт возможность производить фигурную резку труб, что способствует снижению инвестиционных расходов и расходов на обслуживание, а также оптимизации использования производственных площадей.

Читайте также:  Установка автосигнализации на toyota caldina

Знаете ли вы? Специальная машина, позволяющая вращать трубу в процессе резки, как и в процессе сварки, называется «сварочный вращатель».

Перемещение суппортов для удерживания трубы в горизонтальном положении и сварочного вращателя в универсальной системе резки труб от Eckert синхронизировано и управляется ЧПУ. С помощью оборудования ESR-300 можно обрабатывать трубы диаметром 50- 300 мм и толщиной до 10 мм . Другие модификации системы – ESR-600 и ESR-900 – применяются для труб диаметром 150-600 и 300- 900 мм соответственно.

Пример 3. Установка плазменной резки труб Koral

Эта современная установка плазменной резки труб специально предназначена для предприятий, работающих в сфере изготовления конструкций для строительства и трубопроводов. Независимая система Koral от Eckert предназначена для тех случаев, когда необходимо сосредоточиться на предельно точной резке труб. В зависимости от модификации, Koral может обрабатывать трубы диаметром 50-300, 150-600 и 300- 900 мм соответственно.

Основная задача, с которой успешно справляется установка плазменной резки Koral, — это изготовление трубных элементов, участвующих в создании сложных конструкций (например, если необходимо соединить несколько труб в один узел). Благодаря ЧПУ, установка Koral автоматически поворачивает обрабатываемую трубу и обеспечивает точное позиционирование горелки по месту плазменной резки.

В качестве опции установку можно дополнить 3D головой, позволяющей за один проход осуществить рез любой сложности и выполнить снятие фаски. 3D голова плавно меняет угол наклона и автоматически выполняет повороты горелки в процессе резки.

Кроме продукции компании Eckert, популярным оборудованием для плазменной резки труб являются станки под маркой TubeTailor (линия специально для труб компании SteelTailor). Посмотреть, как работает такая машина, можно в следующем видео:

источник

Сообщества › Самодельный Гаражный Hi-End › Блог › Станок плазменной резки с ЧПУ

Пс-с-с-т, пацаны, хотите немного гаражного хайтека? 😉

Обычно, когда мне было нужно вырезать из листового металла какую-то деталь (или много деталей), я обращался в компанию, занимающуюся лазерной и плазменной резкой, и они решали мою проблему. В какой-то момент мне надоело ждать по 5-7 дней, пока исполнят заказ, ездить по пробкам за вырезанными деталями, искать на производстве кладовщика, чтобы забрать заказ и вот это вот все. Человеческий фактор тоже никто не отменял: то подрядчик что-то вырезать забудет, то сам накосячишь с заказом, и приходится по новой ждать, пока вырежут недостающие позиции. Ну и, наконец, ползучий рост цен на все сделал свое дело, и однажды стало понятно, что заказывать резку на стороне становится просто не выгодно.
Пришло время делать ЭТО — строить станок плазменной резки с ЧПУ.

Просмотрев пару сотен различных видео на Youtube и изучив существующие подходы к строительству подобных станков в гаражных условиях, я решил, что при постройке станка буду максимально экономить на механической части и везде, где только возможно, обходиться материалами, которые можно купить в магазине или на строительном рынке. А вот на электронной части, наоборот экономить не буду.
Основная масса проблем, с которой сталкиваются самодеятельные станкостроители, связана как раз с некорректной работой электроники станка. И часто именно она мешает закончить проект и довести его до стадии «боевой» эксплуатации. Поэтому было решено блок управления станком строить, не увлекаясь кроиловом, а механическую часть собирать с минимальным бюджетом и в дальнейшем модернизировать ее по мере необходимости.

Читайте также:  Установка внутривенного катетера животным

Для тех кому интересны подробности, я изложил все соображения вот здесь:

Начал с разработки конструкции. Базу станка решил собирать из стандартного стального профиля сечением 40х40мм и 60х40мм. Конструкция модульная, что в перспективе облегчит доработку и модернизацию (а она 100% понадобится, потому что в таком сложном проекте сделать все сразу идеально невозможно).

Начали с постройки стола, на который в дальнейшем будут устанавливаться все элементы станка:

Готовый стол. Собран из профиля 40х40. Сварки старались делать как можно меньше, чтобы избежать поводок. Все, что возможно, собирали на болтах с помощью заранее вырезанных лазером зажимных пластин. Такая технология сильно экономит время при сборке т.к. не требуется размечать и сверлить крепежные отверстия в элементах из профиля.

Каретки для перемещения портала собрали из вырезанных лазером элементов. В качестве роликов использовали 608-е подшипники.

Ось Z собирали по тому же принципу. В качестве направляющих использовали стандартный профиль 25х25, из готовых элементов взяли только ШВП и подшипниковые блоки для поддержки ее вала.

Далее пришла очередь сборки направляющих…

…и установки портала на стол:

Как я уже говорил, не все идеально получается с первого раза. Чаще всего сталкиваешься с неожиданными проблемами, которые приходится исправлять. Наш проект не стал исключением:

Последним этапом стала сборка водяного поддона. Поскольку возможности поставить мощную вытяжку для удаления продуктов горения металла у меня нет, я решил для сборки окалины использовать ванну с водой. Она не так удобна в использовании, как вытяжка, но у нее есть огромное преимущество с точки зрения пожарной безопасности.

Далее пришла очередь блока управления. Его решил разместить в специально для этих целей купленном готовом шкафу. Шкаф выбрал достаточно большой, т.к. драйверы шаговых двигателей сильно нагреваются при работе, и плотно упаковывать все это хозяйство не полезно. Большой шкаф, 2 приточных и 2 вытяжных вентилятора — это обеспечит нормальную температуру работы драйверов.

Прикинул размещение элементов на монтажной панели…

К сборке подошли весьма параноидально. Все сигнальные цепи были убраны в экранирующую оплетку, которая была заземлена на корпус:

Блок автоматического контроля высоты плазмотрона приобрел готовым. Долго выбирал из нескольких вариантов, предлагаемых в РФ, рассматривал польский блок Proma, но в итоге остановился на блоке Владимира Егорова из Киева, т.к. он показался мне более удобным в плане подключения и работы.

При резке металла плазмой разрезаемый лист ведет при нагреве, и он начинает изгибаться (да и исходные листы приходят с металлобазы кривыми, как жизнь портовой шлюхи). Чтобы рез был качественным, необходимо, чтобы расстояние от поверхности листа до сопла горелки оставалось неизменным на всем протяжении работы. Блок контроля высоты следит за этим расстоянием и дает команды на подъем или опускание горелки по мере необходимости.

Читайте также:  Установка vsftpd сервер на ubuntu

Лицевая панель шкафа выглядит скромно: кнопка включения питания, кнопка аварийной остановки и настройки блока контроля высоты:

Для блока управления нужна стойка. Ее сварили из профиля 60х60мм и поставили на колеса, чтобы было легко перемещать с места на место.

На стойке, кроме самого блока управления, закреплен и источник плазмы. У меня это Grovers Cut 60. Его главные достоинства — пневматический поджиг дуги и резка металла больших толщин (до 25мм с черновым качеством) при работе от 220В. У меня максимальная толщина резки будет 12мм, поэтому такого источника хватит с лихвой.

Станок управляется с компьютера программой Mach3. Я выбирал между Mach3, Linux CNC и Puremotion, но остановился на первом варианте. Одна из причин — большое количество информации по настройке данного пакета и весьма демократичная цена. Кроме того, мой станок управляется не через параллельный порт, а через ethernet. Производитель контроллера (Purelogic) не поддерживает LinuxCNC, поэтому от его использования пришлось отказаться, хотя этот пакет очень стабильно работает и бесплатен.

Тестирование станка начал с перемещений в ручном режиме

Настроил датчики хоуминга и возврат референтную точку:

Проверил, как станок исполняет реальный G-код. Вместо горелки закрепил маркер. Получился станок для рисования 🙂

И, наконец, резка первой детали:

Готовый станок перенесли на подготовленное для него место:

Управляющий станком компьютер находится на противоположном конце мастерской. За счет того, что станок управляется по локальной сети сильно снизилось влияние на линии управления электромагнитных помех, возникающих при резке. Это в свою очередь исключило все трудно диагностируемые ошибки, на которые часто жалуются пользователи программы Mach3, и повысило стабильность работы всей системы.

Станок имеет рабочее поле 1500х1000мм. Т.е. можно взять стандартный лист 1500х3000 или 1500х6000, отрубить от него метровую полосу и работать. Конечно, идеально иметь станок, на который лист укладывается целиком, но я себе такого позволить не могу, т.к. ограничен размерами помещения и тем, что находится оно на 4 этаже, куда большой лист не затащить.

Главный вопрос, который меня волновал при постройке — какая в итоге получится точность с такими примитивными направляющими? Опыт показал, что для большинства стоящих передо мной задач точности достаточно. Фланцы, косынки, закладные, детали станков под сварку, вывески и декоративные элементы — все это режется без проблем, и существующие погрешности на результат не влияют. Да, это, конечно, не лазер. Да, конечно, точность резки еще можно повысить (и я со временем это сделаю). Зато теперь я могу резать детали БЫСТРО, многократно быстрее и точнее, чем вручную, даже с использование шаблонов. Экономия времени и сил колоссальная. Решение заморачиваться с постройкой станка было верным, и итоговый результат стоит потраченных времени и средств (я уже не говорю о полученном в процессе постройки опыте).

P.S. Для тех кому интересна данная тема вот здесь есть еще пара видео на тему данного станка:

Устройство блока управления:

Полный обзор станка и комментарии об опыте его двухмесячной эксплуатации

источник

Добавить комментарий