Меню Рубрики

Установки прямого нагрева электрические

Способы электрического нагрева

Основные методы и способы преобразования электрической энергии в тепловую классифицируют следующим образом. Различают прямой и косвенный электрический нагрев.

При прямом электронагреве преобразование электрической энергии в тепловую происходит в результате прохождения электрического тока непосредственно по нагреваемому телу или среде (металл, вода, молоко, почва и т. п.). При косвенном электронагреве электрический ток проходит по специальному нагревательному устройству (нагревательному элементу), от которого тепло передается нагреваемому телу или среде посредством теплопроводности, конвекции или излучения.

Существует несколько видов преобразования электрической энергии в тепловую, которые определяют способы электрического нагрева.

Протекание электрического тока по электропроводящим твердым телам или жидким средам сопровождается выделением тепла. По закону Джоуля — Ленца количество тепла Q=I 2 Rt, где Q — количество, тепла, Дж; I — сила тока, А; R — сопротивление тела или среды, Ом; t — время протекания тока, с.

Нагрев сопротивлением может быть осуществлен контактным и электродным способами.

Контактный способ применяется для нагрева металлов как по принципу прямого электрического нагрева, например в аппаратах электроконтактной сварки, так и по принципу косвенного электрического нагрева — в нагревательных элементах.

Электродный способ применяется для нагрева неметаллических проводящих материалов и сред: воды, молока, сочных кормов, почвы и др. Нагреваемый материал или среда помещается между электродами, к которым подводится переменное напряжение.

Электрический, ток, протекая по материалу между электродами, нагревает его. Обычная (недистиллированная) вода проводит электрический ток, так как в ней всегда содержится некоторое количество солей, щелочей или кислот, которые диссоциируют на ионы, являющиеся носителями электрических зарядов, то есть электрического тока. Аналогична природа электропроводности молока и других жидкостей, почвы, сочных кормов и т. п.

Прямой электродный нагрев осуществляется только на переменном токе, так как постоянный ток вызывает электролиз нагреваемого материала и его порчу.

Электронагрев сопротивлением нашел широкое применение в производстве в связи с его простотой, надежностью, универсальностью и невысокой стоимостью нагревательных устройств.

В электрической дуге, возникающей между двумя электродами в газообразной среде, происходит превращение электрической энергии в тепловую.

Для зажигания дуги электроды, присоединенные к источнику питания, на мгновение соприкасают, а затем медленно разводят. Сопротивление контакта в момент разведения электродов сильно нагревается проходящим по нему током. Свободные электроны, постоянно движущиеся в металле, с повышением температуры в месте соприкосновения электродов ускоряют свое движение.

С ростом температуры скорость свободных электронов настолько возрастает, что они отрываются от металла электродов и вылетают в воздушное пространство. При движении они сталкиваются с молекулами воздуха и расщепляют их на положительно и отрицательно заряженные ионы. Происходит ионизация воздушного пространства между электродами, которое становится электропроводным.

Под действием напряжения источника положительные ионы устремляются к отрицательному полюсу (катоду), а отрицательные ионы — к положительному полюсу (аноду), тем самым образуя длительный разряд — электрическую дугу, сопровождающуюся выделением тепла. Температура дуги неодинакова в различных ее частях и составляет при металлических электродах: у катода — около 2400 °С, у анода — около 2600 °С, в центре дуги — около 6000 — 7000 °С.

Различают прямой и косвенный электродуговой нагрев. Основное практическое применение находит прямой электродуговой нагрев в дуговых электросварочных установках. В установках косвенного нагрева дуга используется как мощный источник инфракрасных лучей.

Если в переменное магнитное поле поместить кусок металла, то в нем будет индуктироваться переменная э. д. с, под действием которой в металле возникнут вихревые токи. Прохождение этих токов в металле вызовет его нагрев. Такой способ нагрева металла называется индукционным. Устройство некоторых индукционных нагревателей основано на использовании явления поверхностного эффекта и эффекта близости.

Для индукционного нагрева используются токи промышленной (50 Гц) и высокой частоты (8—10 кГц, 70—500 кГц). Наибольшее распространение получил индукционный нагрев металлических тел (деталей, заготовок) в машиностроении и при ремонте техники, а также для закалки металлических деталей. Индукционный способ может использоваться также для нагрева воды, почвы, бетона и пастеризации молока.

Физическая сущность диэлектрического нагрева заключается в следующем. В твердых телах и жидких средах с плохой электрической проводимостью (диэлектриках), помещенных в быстропеременное электрическое поле, электрическая энергия превращается в тепловую.

В любом диэлектрике имеются электрические заряды, связанные межмолекулярными силами. Эти заряды называются связанными в отличие от свободных зарядов в проводниковых материалах. Под действием электрического поля связанные заряды ориентируются или смещаются в направлении поля. Смещение связанных зарядов под действием внешнего электрического поля называется поляризацией.

Читайте также:  Установка противотуманок в бампер 2107

В переменном электрическом поле происходит непрерывное перемещение зарядов, а следовательно, и связанных с ними межмолекулярными силами молекул. Энергия, затрачиваемая источником на поляризацию молекул непроводниковых материалов, выделяется в виде тепла. В некоторых непроводниковых материалах есть небольшое количество свободных зарядов, которые создают под действием электрического поля незначительный по величине ток проводимости, способствующий выделению дополнительного тепла в материале.

При диэлектрическом нагреве материал, подлежащий нагреванию, помещается между металлическими электродами — обкладками конденсатора, к которым подводится напряжение высокой частоты (0,5 — 20 МГц и выше) от специального высокочастотного генератора. Установка для диэлектрического нагрева состоит из лампового генератора высокой частоты, силового трансформатора и сушильного устройства с электродами.

Высокочастотный диэлектрический нагрев — перспективный способ нагрева и применяется главным образом для сушки и тепловой обработки древесины, бумаги, продуктов и кормов (сушки зерна, овощей и фруктов), пастеризации и стерилизации молока и т. п.

Электронно-лучевой (электронный) нагрев

При встрече потока электронов (электронного луча), ускоренных в электрическом поле, с нагреваемым телом электрическая энергия превращается в тепловую. Особенностью электронного нагрева является высокая плотность концентрации энергии, составляющая 5х10 8 кВт/см2, что в несколько тысяч раз выше, чем при электродуговом нагреве. Электронный нагрев применяется в промышленности для сварки очень мелких деталей и выплавки сверхчистых металлов.

Кроме рассмотренных способов электронагрева, в производстве и быту находит применение инфракрасный нагрев (облучение).

источник

Установки прямого нагрева электрические

Изучение устройства электронагревательных установок и правил их эксплуатации.

Электрический нагрев обладает значительным техническим преимуществом: постоянная готовность к действию электро­тепловых установок, возможность полной автоматизации про­цессов нагрева с поддержанием температуры в установленных пределах (в инкубаторах, пастеризаторах и т. п.), малые капи­тальные затраты, хорошие санитарно-гигиенические условия. В практике применяют различные способы электронагрева: сопротивлением, индукционный, электродуговой, диэлектрический, электронно-лучевой, инфракрасными лучами.

В сельскохозяйственном производстве нашел широкое при­менение электронагрев сопротивлением. При этом способе ис­пользуется тепловое действие электрического тока. Проходя по твердым телам (проводникам) или жидким средам, электри­ческий ток нагревает их.

Электронагревательные установки сопротивления бывают прямого и косвенного электронагрева. При прямом электрона­греве преобразование электрической энергии в тепловую про­исходит в результате прохождения электрического тока непо­средственно по нагреваемой среде (вода, молоко и другие про­водящие среды). При косвенном электронагреве электрический ток проходит по специальному нагревательному элементу, от которого тепло передается нагреваемой среде.

В установках с прямым (электродным) нагревом нагревае­мая среда помещается между электродами, которые подклю­чаются к электрической цепи переменного тока. Электрический ток, протекая по среде между электродами, нагревает ее. Уста­новки с прямым нагревом называют электродными нагревате­лями.

В животноводстве электродные нагреватели применяют в ос­новном для нагрева воды. Электродные водонагреватели прос­ты по конструкции и удобны в эксплуатации. Основной недо­статок — значительное увеличение потребляемой мощности от начала нагрева воды до конца (примерно в пять раз при нагре­ве воды от 10 до 100°С). Это объясняется тем, что с повыше­нием температуры воды уменьшается ее удельное сопротивле­ние. Другим недостатком этих нагревателей является непосред­ственный контакт между электродами и средой (водой), что по­вышает опасность поражения электрическим током людей и жи­вотных.

В установках с косвенным (элементным) нагревом теплота выделяется при прохождении тока через нагревательные эле­менты. Установки с косвенным нагревом называют элемент­ными.

Нагревательные элементы изготовляют в форме ленты или проволоки из материала, обладающего следующими физико-техническими свойствами: большим удельным сопротивлением, высокой температурой плавления, малым температурным коэф­фициентом сопротивления, устойчивостью к окислению.

Для изготовления нагревательных элементов применяют; ни­хром, фехраль, констант и другие проводниковые материалы.

Нагревательные элементы могут быть открытыми и закры­тыми.

Закрытые нагревательные элементы не имеют непосредст­венного контакта с нагреваемым материалом. В практике’ ши­роко применяют трубчатый электрический нагреватель (ТЭН). Он представляет собой металлическую трубку, внутри которой в кварцевом песке или в плавленой окиси магния находится спираль из нихромовой или константановой проволоки. Трубки герметизированы. Срок службы ТЭНов около 10 000 ч.

Рассмотрим устройство и работу некоторых типов электро­нагревателей.

Водонагреватель-термос — типа ВЭТ предназна­чен для нагрева воды до заданной температуры (от 8 до 90°С) и сохранения ее в горячем состоянии. Они состоят из стально­го сварного резервуара вместимостью от 200 до 1600 л, ко­жуха с крышкой, нагревательного устройства, температур­ного реле. Между кожухом и резервуаром размещен тепло­изоляционный слой 3 из стеклянной или шлаковой ваты. Водо­нагреватели комплектуются станцией управления с автомати­ческим выключателем и магнитным пускателем.

Читайте также:  Установка дезинфекционная для установки кронт

А – устройство; б – электрическая схема; в — температурное реле; 1 – кожух; 2 — резервуар; 3 – теплоизоляция; 4,7 – патрубки; 5 – температурное реле; 6 — нагревательное устройство; 8 – кран спускной; 9 – изоляционная вставка; 10 – термометр; 11 – ртутный переключатель; 12 – Г-образный палец; 13 – обойма; 14 — биметаллическая спираль; 15 – валик; 16 – трубка; 17 – противовес; 18 – упор; Г1 — рубильник; Г2,Г3, Г4 – предохранители; К – магнитный пускатель; Т – терморегулятор.

Нагревательное устройство состоит из нескольких трубчатых электрических нагревателей (ТЭНов) с питанием от сети с на­пряжением 220 В.

Температурное реле служит для автоматическо­го включения и выключения нагревательного устройства в за­висимости от температуры воды. Оно состоит из биметаллической пластинчатой спирали, один конец которой прикреплен к корпусу, а другой соединен с валиком и укрепленным на ва­лике ртутным переключателем. Перед включением водонагре­ватель заполняют водой; пока она не потечет через разборную трубу. Затем нажимают на пусковую кнопку автомата. Через замкнутые контакты температурного реле включается катушка магнитного пускателя, который, в свою очередь, включает труб­чатые электрические нагреватели. По мере нагрева воды спи­раль закручивается и поворачивает валик с Г-образным паль­цем, который наклоняет ртутный переключатель. Когда тем­пература воды достигнет верхнего заданного предела, ртутный переключатель повернется настолько, что ртуть в нем перель­ется в одну сторону, и цепь катушки магнитного пускателя разомкнется, и, следовательно, отключаются нагревательные эле­менты. С охлаждением воды охлаждается и температурное ре­ле, которое вновь включит магнитный пускатель и нагреватель­ные элементы.

Необходимую температуру нагрева воды устанавливают по шкале температурного реле. При повороте рычажка по часо­вой стрелке устанавливаемая температура нагрева увеличива­ется, при повороте рычажка против часовой стрелки — умень­шается. К водопроводной сети водонагреватель присоединяют через резиновый шланг (изоляционная вставка) 9 длиной не менее 1 м. Резиновый шланг служит для электроизоляции во­допровода от водонагревателя. При пуске в эксплуатацию водонагреватель наполняют хо­лодной водой, открыв вентиль на питающем трубопроводе. Как только вода потечет из патрубка горячей воды, закрывают вентиль на питающем трубопроводе и включают нагреватель­ное устройство в сеть.

Горячую воду из резервуара забирают через патрубок, от­крыв предварительно вентиль на питающем трубопроводе. При открытом вентиле холодная вода из водопровода поступает че­рез патрубок холодной воды в резервуар и вытесняет нагре­тую воду через патрубок горячей воды. В результате резер­вуар всегда наполнен водой.

Нагретую воду нельзя разбирать через спускной кран при включенном нагревательном устройстве, так как уровень воды в резервуаре может опуститься ниже нагревательных элемен­тов и последние, нагреваясь без воды, могут выйти из строя. Поэтому включать нагревательное устройство в электросеть можно только при заполненном водой резервуаре.

Водонагреватели типа ВЭТ рассчитаны на питание водой от водопроводной сети давлением не более 300 кПа. Водонагрева­тель устанавливают на постаменте из кирпича или дерева. Его корпус обязательно заземляется или зануляется. Водонагре­ватель может питаться от сети переменного тока напряжением 380 или 220 В. Если напряжение сети 380 В, нагревательные элементы соединяют «звездой», при напряжении сети 220 В их соединяют «треугольником». Такую конструкцию имеют элект­рические водонагреватели-термосы ВЭТ-200, ВЭТ-400, ВЭТ-800, ВЭТ-1600.

Проточные водонагреватели типа ЭВП предназначены для подогрева проточной воды во время ее непосредственного по­требления Вода может подогреваться до любой заданной тем­пературы в пределах до 90°С.

Проточный водонагреватель типа ЭВП представля­ет собой цилиндрический резервуар, закрытый металлическим кожухом, предназначенным для теплоизоляции и огражде­ния горячей поверхности резервуара от прикосновения. Внутри резервуара вдоль его оси размеще­ны три трубчатых нагревательных элемента, которые могут быть сое­динены в «звезду» или «треуголь­ник» в зависимости от напряжения сети. Сверху на резервуар надета крышка с резиновой прокладкой. В крышке имеется шесть отверстий для вывода концов нагревательных элементов. Водонагреватель присое­диняется к водопроводной сети по­средством изолирующих резиновых шлангов (вставок) длиной 1 м каждый. Холодная вода из водо­провода подается в резервуар через кран 6 и нижний (входной) патру­бок, омывает нагревательные эле­менты, нагревается и выходит из резервуара через верхний патрубок. Температура нагрева за­висит от количества воды, протекающей через водонагреватель в единицу времени. Чем больше протечет воды, тем ниже бу­дет ее температура. Поэтому температуру нагреваемой воды ре­гулируют вентилем, уменьшая или увеличивая подачу воды в резервуар.

Читайте также:  Установка ксенон honda civic

На верхнем патрубке установлены термометр и предохра­нительный клапан, который служит для предотвращения воз­можности взрыва при интенсивном парообразовании (напри­мер, в случае прекращения притока воды). Для включения во­донагревателя надо открыть вентиль и пустить воду из водо­провода в резервуар, а потом включить нагревательные эле­менты в электрическую сеть.

Схема автоматики водонагревателя ЭВП-2А позволяет осу­ществлять двухпозиционное регулирование температуры выход­ной воды. Проточные электроводонагреватели типа ЭВП вы­пускаются промышленностью в различных модификациях.

Кроме рассмотренных электроводонагревателей, на живот­новодческих фермах применяются электрические нагреватели УАП-1600/0,2,ЭВ-Ф-15А, УАП-300/0.2-М1, УАП-400/0,9-М1 и др.

Электрокалориферные установки предназначены для нагре­ва воздуха в системах приточной вентиляции животноводческих, птицеводческих и других сельскохозяйственных помещений. Их можно также использовать для сушки различных материалов, трав, сена, зерна и т. д. Нагрев воздуха в электрокалориферах осуществляется труб­чатыми нагревательными элементами, оребренными алюмини­ем. Применяются также открытые нагревательные элементы. Нагревательные элементы установлены в камере нагрева на пу­ти движения воздуха. Количеством нагревательных элементов регулируют мощность (теплопроизводительность) электрокало­риферной установки. Температуру нагретого воздуха при по­стоянном числе элементов можно изменять, варьируя произво­дительность вентилятора.

Наша промышленность выпускает электрокалориферные ус­тановки серии СФОА. Эти установки просты по конструкции, компактны, удобны в эксплуатации, могут быть легко автома­тизированы.

Электрокалориферная установка (рис. 90) состоит из эле­ктрокалорифера, центробежного вентилятора, электродви­гателя 6 и шкафа с аппаратурой автоматического управления. Для сельского хозяйства выпускают калориферы мощностью от 5 до 100 кВт на напряжение 380/220 В. Выпускаются эле­ктрокалориферы и другого типа (НЭК-В1, 1СФО-18/0.5Т, ЭК, ЭКВидр.).

Электробрудеры Предназначены для местного обогрева цып­лят в первый месяц их выращивания при напольном содержа­нии.

Электрический зонтичный брудер БП-1 состоит из пирамидального шестигранного зонта, обогревателя, темпе­ратурного реле и подвески.

Обогреватель представляет собой усеченный конус, на боко­вой поверхности которого установлены четыре трубчатых эле­ктронагревателя типа ТЭН, соединенных попарно в две груп­пы. Мощность каждого элемента 300 Вт при напряжении 110В. Заданное значение температуры под зонтом поддерживается при помощи терморегулятора, который состоит из мембран­ного датчика, заполненного эфиром, промежуточного реле, микровыключателя, регулировочного винта с механизмом от­ключения и тумблера для включения и отключения лампы ос­вещения. Для контроля за работой нагревательных элемен­тов ТЭНов служит сигнальная лампа Я.

При включенном электробрудере ток из сети через контакты температурного реле поступает в катушку проме­жуточного реле и через его контакты на нагреватели (ТЭН). В случае превышения установленной температуры контакты температурного реле размыкаются и отключаются ТЭНы и сигнальная лампа. При понижении температуры под бруде­ром температурное реле срабатывает и включает нагревате­ли с сигнальной лампой. Подвешивают брудеры к потолку зда­ния. По мере роста цыплят брудер при помощи лебедочного устройства поднимают. Электробрудер БП-1 потребляет мощ­ность 1,2 кВт и рассчитан на напряжение 220В.

Электрообогреваемые полы получают все более широкое применение на животноводческих и птицеводческих фермах. Они улучшают микроклимат в помещениях и предохраняют жи­вотных от простудных заболеваний. Полы нагреваются нагре­вательными проводами или стальной оцинкованной проволокой. Для этих целей применяются провода марок ПОСХВ и ПОСХП.

При устройстве пола (глинобитного или бетонного) на хо­роший уплотненный грунт укладывают гидроизоляцию из толя или полиэтиленовой пленки в два слоя. На гидроизоляцию (ес­ли пол бетонный), покрытую песком, укладывают тепловую изо­ляцию. В качестве изоляции применяют пенобетон, пенопласт, керамзит или котельный шлак, который насыпают слоем тол­щиной до 150 мм. На теплоизоляцию кладут бетон. В слое бе­тона прокладывают нагревательные провода, сверху которых помещают экранирующую металлическую сетку. Толщина слоя бетона может составлять от 60 до 200 мм в зависимости от ме­ханической нагрузки на пол и графика снабжения электроэнер­гией. При частом отключении энергии толщину полов делают больше, чтобы увеличить их теплоаккумулирующую способ­ность. При бесперебойном снабжении электроэнергией толщи­ну слоя бетона делают не более 60 мм, толщину слоя под на­гревательным проводом — около 40 мм. При устройстве глино­битного пола на гидроизоляцию насыпают песок слоем около 100 мм, в котором прокладывают зигзагом нагревательные про­вода. На песок укладывают экранирующую сетку и затем глиносоломенную смесь или же глинобетон. Экранирующую сетку заземляют или зануляют. Нагревательное устройство пола раз­бивают на несколько секций с самостоятельным управлением.

В зависимости от возраста животных температуру пола поддер­живают в определенных пределах с помощью температурного двухпозиционного датчика или реле.

источник

Добавить комментарий