Меню Рубрики

Установки управления устройствами освещения

Что такое система управления освещением?

Что такое система управления освещением? Это интеллектуальная сеть, которая позволяет обеспечивать нужное количества света ТАМ, ГДЕ и КОГДА это необходимо. Иногда такие системы встречаются под названием «умное освещение».

Какие модели светильников марки Revolight можно использовать в составе системы управления освещением?

Все модели производства Revolight могут работать в системе управления освещением. Однако в базовой комплектации такая функция отсутствует у большинства моделей.

Поэтому, приобретая осветительное оборудование, следует выбирать модификации, в конструкции которых установлено дополнительное оборудование, имеющее возможность подключения к соответствующим каналам управления, для использования необходимых протоколов и для сопряжения с соответствующими механизмами.

Пример организации системы управления концертным освещением с протоколом DMX512

С какими протоколами или дополнительными приборами и механизмами автоматизации системы управления могут использоваться светильники Revolight?

сопряжение с приборами GLONASS

иное, по согласованию с производителем

Какие возможности предоставляет система автоматизированного управления освещением?

улучшение комфортности освещения

повышение безопасности дорожного и пешеходного движения

увеличение срока службы источников света

функции мониторинга работоспособности осветительных приборов

функции диагностики и устранения неисправностей

функции полной или частичной автоматизации освещения

Примеры экономии, достигаемой только за счет полноты автоматизации в период эксплуатации осветительных приборов Revolight:

  • 0% при отсутствии системы автоматического управления освещением
  • до -25% при ручном управлении отдельными контурами освещения
  • до -50% при ручном управлении совместно с датчиками присутствия
  • до -60% при автоматическом регулировании светового потока источников искусственного света в зависимости от интенсивности естественного освещения
  • до -75% при комбинации вариантов 3 + 4 + использование контроллера с часами реального времени

Как обойтись без классического набора элементов и каналов связи системы управления освещением и обеспечить автоматическую работу удаленно расположенных светильников Revolight?

Использовать модификацию светильников с функцией астротаймера (локальная система управления).

Астротаймер, в зависимости от настроек, может самостоятельно включаться, выключаться и диммироваться в определенный момент времени, например на время сумерек, или за час до заката, или через 2 часа после рассвета, или при установке других значений.

Данные параметры устанавливаются либо на заводе перед отгрузкой заказа, или при монтаже изделий на месте их использования.

Рис.2. Пример программирования режимов работы таймера

Подобное решение позволяет экономить на подключении дополнительных устройств и повышает отказоустойчивость системы по причине снижения числа используемых компонентов.

Какими могут быть рекомендации или показания к применению системы управления освещением?

  • Для уличного освещения региональных дорог может рекомендоваться применение астродрайверов или интерфейсов DMX для дистанционного регулирования яркости света.
  • Для освещения тоннелей рекомендуется применение локальной системы автоматического управления для воспроизведения дневного, ночного и сумеречного режимов работы освещения, которые являются составными частями основного рабочего освещения, а также аварийной системой освещения.
  • Для парковок, охраняемых территорий, открытых складских площадок необходима система ручного общего диммирования основного освещения в нерабочее ночное время и дистанционное автоматическое управление с применением датчиков движения отдельных осветительных приборов, с настроенными режимами освещения охраняемого периметра.
  • Для любых помещений и цехов площадью более 50 кв. м следует применять автоматические устройства регулирования искусственного освещения в зависимости от естественной освещенности помещения.
  • Для складских помещений с круглосуточной работой, высотой штабелирования свыше 10 метров и площадью более 500 кв. м, следует устанавливать системы ручного управления дежурным освещением и систему с автоматическим диммированием освещения – на пересечении основных и второстепенных проходов – по команде датчиков движения, с отдельным диммированием межрядного освещения по команде датчиков присутствия.
  • Для прочих складских помещений площадью свыше 200 кв. м рекомендуется установка автоматизированной системы с применением таймеров, датчиков движения и присутствия с полным выключением отдельных зон склада и прилегающей территории при отсутствии в них движения в темное время суток.
  • Управление рабочим освещением в торговых залах площадью 300 кв. м и более, в актовых залах, конференц-залах, театрах, обеденных залах столовых и ресторанов с числом рабочих мест свыше 100, в вестибюлях и в холлах гостиниц должно быть централизованно дистанционное.
  • Для учебных классов, спортивных и актовых залов, конструкторских бюро, рабочих кабинетов поликлиник и других учреждений здравоохранения следует предусматривать отключение светильников: либо рядами, либо параллельно световым проемам, либо плавно, либо ступенчато; также в зависимости от естественной освещенности.
  • Для освещения лестниц, холлов, коридоров общественных зданий следует организовывать автоматическое или дистанционное управление, с дополнительным применением датчиков присутствия/движения, позволяющее сокращать освещенность неиспользуемых пространств в ночное время суток.
  • Для любых санузлов объектов могут применяться датчики присутствия на включение с интегрированными таймерами выключения освещения.
  • Архитектурно-художественное оформление зданий, парков, скверов, монументов, пешеходных, автомобильных и железнодорожных мостов, зданий вокзалов и т.д., требует наличия дистанционной системы управления освещением и может дополняться автоматизацией работы нескольких режимов освещения (локально или удаленно) в соответствии с дизайн-проектом системы, например для повседневного и праздничного режимов работы.

Какими могут быть системы автоматического управления освещением?

Локальная система управления

Строится, преимущественно, на различных датчиках и таймерах, подключаемых непосредственно к источнику света или к нескольким устройствам, работой которых необходимо управлять. Такие приборы не требуют отдельных каналов связи, не интегрируются в общую систему, самодостаточны для самостоятельной работы.

Шинные системы управления

Работают в разных протоколах, с помощью специальных шлюзов, свободно интегрируются в различные системы верхнего уровня. В состав таких систем могут входить:

Читайте также:  Установка vaio control center

Блоки логики, контроллеры, шлюзы, актуаторы – управляющие устройства

Датчики присутствия, движения, освещенности – регистраторы событий

Различные выключатели – ручное управление

Светильники или иные нагрузки – управляемые устройства

Пульты, смартфоны, планшеты, панели управления – дистанционное управление

Каким образом работают системы автоматического управления освещением?

Локальные системы:

обычное включение/выключение подключенных приборов

диммирование источников света

Устройства шинной системы управления освещением исполняют любой логический сценарий:

календарь событий (когда человек пришел, ушел, какая освещенность была, стала и т.д.)

вывести статусы и срок эксплуатации светильников (актуально для эксплуатирующих компаний)

сделать дистанционное управление на планшетах, смартфонах

вывести контроль и управление далеко за пределы здания

Таким образом, системы управления освещением на объекте могут относиться к следующим классам:

Система управления освещением осветительного прибора

Система управления освещением отдельного помещения

Система управления освещением строения/территории/объекта

Примеры функций системы автоматической системы управления освещением

Обеспечение/формирование экранных изображений и выходных форм информационно-вычислительных задач по запросам диспетчера или не оперативного персонала (администратора системы) и включают:

сбор и обработка информации о состоянии оборудования системы освещения;

измерение и контроль потребления электроэнергии по каждому Шкафу Пункта Включения (ШПВ);

обнаружение, сигнализация и регистрация аварийных ситуаций, отказов отдельного оборудования, несанкционированного проникновения в ШПВ;

контроль несанкционированного подключения к кабельным сетям / сетям освещения;

выполнение расчетных задач, расчет наработки и т.д.;

архивирование истории изменения параметров на жестком магнитном диске;

ведение журнала выполненных событий;

формирование и выдача оперативных, архивных данных персоналу;

формирование и печать отчетной документации – за смену, за месяц, выполнение других отчётов;

учет потребляемой электроэнергии.

Функции сигнализации

Сигнализационные функции проявляются при возникновении следующих условий:

срабатывание концевого выключателя на двери шкафа ШПВ (при выполнении несанкционированного доступа);

возникновение аварийной ситуации и/или изменение состояния пункта включения;

несанкционированное подключение к кабельным сетям, к сетям освещения;

авария канала связи со шкафом пункта включения;

критическое число неисправных светильников.

Функции управления: система может работать в одном из трех режимов управления

Автоматический режим работы – основной режим работы.

управление освещением согласно расписанию, заданному диспетчером;

управление уличным освещением может осуществляться по континентальному световому дню (определение времени восхода / захода солнца по широте и долготе объекта освещения);

управление уличным освещением по показанию датчика уровня освещенности.

Ручной дистанционный режим работы.

— управление освещением с АРМ диспетчера. Диспетчер в ручном режиме активирует необходимые переключения, задания и установки. Например, в аварийной ситуации или при ремонтных / регламентных работах.

Ручной аппаратный режим работы.

— управление освещением по месту установки ШПВ. Обслуживающий персонал осуществляет переключение освещения с помощью переключателей, установленных в ШПВ, проводя необходимые проверки работоспособности при ремонтных и регламентных работах.

Сервисные функции

автоматическая диагностика каналов связи со шкафом пункта включения;

автоматическая диагностика коммутирующего оборудования;

проведение в регламентируемых пределах подключений / отключений, проверки / замены элементов системы;

ручной ввод установок и констант управления, обработки информации;

защита от несанкционированного доступа в среду системы;

доступ к функциональным возможностям системы предоставляется согласно установленным административным разграничениям уровней доступа.

Внедрение автоматизированной системы управления освещением промышленного предприятия (как административных, так и производственных объектов) позволяет осуществлять телекоммуникационный контроль состояния сетей и осветительных приборов, управлять рабочими режимами светильников, дистанционно управлять освещением отдельных участков объекта по заранее заданному графику, а также вести учет энергопотребления и следить за эффективным использованием электроэнергии.

Наиболее значимые объекты с применением систем управления освещением со светильниками Revolight (В проектах, в частности, использовалось оборудование Beckhoff CX-xxxx, что способствовало получению награды за лучший городской проект Embedded Intelligence 2014):

1) Памятные стелы Фронтам и Флотам, Парк Победы, Поклонная гора, г. Москва

Система управления художественной подсветки (СУХП) на основании ТЗ на разработку системы управления установкой по объекту.

Описание объекта: 15 памятных стел, установленных в парке города.

Светильники: Для каждой из 15 стел устанавливаются 9 светильников RC-AX-RGB со шкафами управления для архитектурной подсветки в вечернее и ночное время. Для освещения предлагаются RGB светильники общего освещения с DМX управлением динамического полихромного освещения, предусматривающего возможность реализации различных сценариев художественной подсветки.

Система управления: Двухуровневая система управления состоит из шкафов локального управления наружным освещением и центрального сервера. Шкафы локального управления расположены в непосредственной близости от монумента, управление светильниками которого они осуществляют и соединены с центральным сервером в диспетчерской через роутер Wi-Fi. Роутер обеспечивает управление способами:

автоматически (приборами управления шкафа управления);

вручную (органами местного ручного управления и с помощью переносного компьютера или специального мобильного оборудования, подключаемых к интерфейсу шкафа управления);

  • дистанционно (комплексная автоматизированная система управления установками из диспетчерского пункта управления художественной подсветкой).
  • Москва, Поклонная гора, Парк Победы, Главная аллея, Памятные стелы Фронтам и флотам ВОВ 1941-1945гг, Установленны прожекторы RGB с подключением к системе удаленного управления

    Художественное освещение верхней части зданий, расположенных вдоль Садового Кольца, г. Москва, проект «Золотое Сечение»

    В проекте выполнено освещение всех зданий, расположенных по обе стороны от автомобильной дороги. Вся система объединена в единый комплекс. В архитектурном освещении каждого дома используются статические и динамические осветительные приборы.

    Читайте также:  Установка linux mint на virtual box

    Система управления:

    обеспечивает управление режимами работы архитектурного освещения дома;

    реализует три режима работы архитектурного освещения дома:

    повседневный режим (режим I);

    праздничный режим (режим II);

    контроль положения дверей силового щита;

    обеспечивает управление динамическими осветительными приборами по протоколу DMX-512;

    обеспечивает дистанционное управление динамическими осветительными приборами по протоколу DMX-512 по беспроводному каналу с помощью антенны-передатчика;

    осуществляет контроль состояния аппаратов и электрических параметров в силовой части щита архитектурного освещения дома, (контроль напряжения на вводе);

    обеспечивает автоматический контроль и учет потребления электроэнергии, затраченной на архитектурное освещение дома;

    обеспечивает возможность передачи информации и восприятие управляющих команд от КАСУ по каналу GSM;

    обеспечивает возможность передачи информации с электросчетчика в существующую систему АСКУЭ;

  • обеспечивает синхронизацию времени для динамических осветительных приборов с использованием систем ГЛОНАСС/GPS.
  • источник

    Обзор систем управления уличным освещением

    Инфраструктура любого жилого, промышленного или административного объекта предполагает наличие наружного освещения. Система должна работать безопасно и бесперебойно. На выполнение этой задачи нацелено управление наружным освещением.

    Функции уличного освещения

    Вне зависимости от масштаба объекта — будь это придомовая территория или автомагистраль — его нужно освещать в темное время суток. Свет нужен для безопасного передвижения жильцов дома, обеспечения движения автотранспорта, декоративной подсветки зданий или их отдельных элементов, освещения рекламы на билбордах и т. д.

    Что касается частного жилья, помимо освещения подъезда к дому, подсветка выполняет следующие функции:

    • общее освещение территории (важно с точки зрения безопасности);
    • освещение ступенек в дом;
    • подсветка пешеходных дорожек;
    • освещение локальных участков (например, возле беседки);
    • декоративная подсветка архитектурных и ландшафтных особенностей участка.

    Особенно стоит отметить защитную роль уличного освещения. Благодаря хорошей видимости появляется возможность визуального контроля за территорией (в том числе техническими средствами). Яркий свет отпугивает людей с плохими намерениями. В освещенном дворе любой объект заметен: не каждый злоумышленник решится на несанкционированное проникновение.

    Методы управления уличным освещением

    На практике используется три способа управления светом: ручное, дистанционное и автоматическое.

    Ручное управление

    Включение и выключение уличных светильников осуществляется в ручном режиме. Каждый источник света или их группа управляется оператором непосредственно на месте.

    Этот способ самый древний. Издавна фонарщики подходили к каждому фонарю (газовому или масляному) и зажигали столб, а позднее — гасили. Даже сегодня во дворах частных домов используется ручное управление наружным светом. Однако в коммунальных службах управлять светом в ручном режиме невозможно из-за масштабов работы, поэтому такой способ используется только в экстренных случаях (например, при выполнении ремонта).

    Удаленный контроль

    С течением времени технологии развивались — вместо фонарщиков управлять освещением стали служащие энергораспределительных сетей. Делали работники служб это дистанционно, включая или выключая рубильник. В результате действий напряжение подается в сеть или, наоборот, прекращается.

    Автоматическое управление

    Управление с помощью автоматики — наиболее продвинутый способ управления светом. Включение и выключение света осуществляется за счет использования датчиков, действующих по определенному алгоритму. В результате система освещения работает без непосредственного участия человека.

    Переход на автоматическое управление вызван изменением технологического процесса. Напряжение к потребителям поступает при участии локально расположенных трансформаторных станций. На этих объектах происходит преобразование высоковольтного напряжения в напряжение нужной величины.

    Существует два обстоятельства, диктующих переход на автоматическое управление:

    1. Чаще всего строить отдельные подстанции для уличного освещения экономические невыгодно. Нынешние трансформаторы преобразуют напряжение для всех потребителей электричества на заданной территории.
    2. Для централизованного контроля за включением и отключением светильников понадобилось бы подтягивать к каждой подстанции отдельный кабель, что только повысит и без того большие расходы.

    В связи с этим начался массовый переход на автоматические системы. В самом начале развития технологии принцип управления был прост: на подстанциях монтировались приборы, контактирующие с датчиками освещенности.

    Со временем стали видны изъяны такого подхода:

    • некорректное срабатывание при неверной калибровке;
    • фонари часто гасли в темное время из-за света фар от проезжающих машин или даже от лунного света;
    • если датчик покрывался снегом, грязью или льдом, происходило ложное срабатывание светильника;
    • датчики нередко выходили из строя.

    Еще один недостаток датчиков освещенности — линейность технологии. Свет не обязательно нужен даже в темное время суток, если на территории отсутствуют движущиеся объекты.

    Чтобы как-то оптимизировать технологию, датчики стали объединять с временными реле. В результате таймер включал и выключал светильники в определенное время. Например, освещение работало с 10 часов вечера до четырех часов утра.

    Позднее появились астрономические реле. В таких устройствах программа по определенному алгоритму рассчитывает время заката и рассвета. На основании расчета происходит управление освещением.

    Датчики освещенности по-прежнему используются. Приборы актуальны для управления светом при неожиданном снижении естественной освещенности (например, туман).

    На сегодняшний день наиболее популярны автоматические системы на основе цифровых технологий, где сочетаются автоматика и ручное управление.

    Устройство автоматической системы

    Аппаратная часть оборудования состоит из таких уровней:

    1. Верхний уровень представляет собой панель диспетчерского пункта. Управляется диспетчером. На панель приходит информация с нижестоящих систем. На верхнем уровне производится коррекция параметров программы или предпринимаются иные управленческие действия.
    2. К нижнему уровню относится электрощит, расположенный на участке освещения. Щиты предназначены для коммутации работы светильников и контролируют их функционирование без участия человека.
    Читайте также:  Установка лампочки большей мощности

    Процесс управления осуществляется с участием зонального контроллера или серверного оборудования. Контроллер служит для образования сигнала на подключение группы уличных светильников.

    Существует несколько способов коммутации между верхними и нижними уровнями:

    1. Модемный канал. Связь выполняется по телефонной линии. Это самый финансово доступный способ коммутации. Прокладка выделенной линии — достаточно затратное мероприятие.
    2. GSM-канал. Уличным освещением можно управлять при помощи системы глобального позиционирования или устройства, позволяющего точно определять время восхода и заката. Контроллер включается за 20 минут до заката и отключается за 15 минут до рассвета. Оборудование стоит недорого, однако сама связь будет стоить немалых денег.
    3. LAN-канал. Способ связи, где блок управления и диспетчерский пункт контактируют через витую пару. Связь бесплатна, однако придется прокладывать кабель к каждому шкафу. Технология актуальна только при близком расположении оборудования разных уровней.
    4. Радиоканал. Оборудование стоит дорого, связь бесплатна. Недостаток — неустойчивость к помехам.

    Возможности автоматики

    Автоматизированная система управления наружным светом позволяет решать целый ряд задач. Условно их можно разделить на две группы — управленческие функции и контрольные.

    1. Включение и выключение светильников.
    2. Программирование работы приборов по времени или реакции датчиков.
    3. Фазовые переключения на электролиниях.
    4. Принудительная перезагрузка микропроцессоров в шкафе управления.
    1. Проверка состояния линий подключения.
    2. Контроль линий ввода.
    3. Контроль работы контакторов и выходных автоматов-выключателей.
    4. Наблюдение за приборами учета расхода электричества.
    5. Мониторинг несанкционированного доступа в шкаф.
    6. Проверка состояния линии.
    7. Изучение неисправностей системы.
    8. Слежение за наличием возгораний.

    Системы управления уличным светом оснащаются встроенными источниками электропитания. Если отключается напряжение, система может работать еще не меньше часа. Во многих системах предусмотрена не только передача данных об изменениях параметров, но и дублированное сохранение информации.

    Шкаф управления

    Шкаф управления наружным освещением (ШУНО) — центральное звено системы, где сосредоточены все схемы, распределяющие нагрузки и контролирующие процесс освещения. Через шкаф осуществляется защита фотореле от замыкания и перепадов напряжения.

    На схеме показана работа ящика управления, где 1 — электросчетчик, 2 — замок, 3 — защитный барьер, 4 — шкаф.

    Главная задача шкафа — контроль за срабатыванием реле исходя из времени суток, управление с помощью пульта и регулировка яркости свечения после подключения реле.

    Шкафы функционируют в таких управленческих режимах:

    1. Местное управление (обычный таймер, астротаймер или иное определяющее устройство).
    2. Каскадная система управления напряжением 220 В/50 Гц. Управление осуществляется по особому сигнальному проводнику от другого шкафа или пульта.
    3. Местное управление.

    Подбор режимов производится при участии имеющихся органов управления. В шкафах есть раздельный контроль ночного освещения (три однофазных линии) и дополнительное ночное освещение (три однофазных линии в электрощитах на 100 А и шесть в щитах на 250 А). Шкафы оснащаются внутренней подсветкой при помощи лампочки накаливания на 40 – 60 Вт.

    Если позволяют финансовые возможности проложить кабель к каждому уличному светильнику с реле, один из шкафов размещают внутри здания, а второй — на въезде в участок. Однако щиты будут работать одновременно, в результате чего каждый блок станет потреблять электроэнергию как полноценный кабельный канал.

    Рекомендуется такая схема: первый шкаф размещают у ворот, подключив к его контроллеру светильники с датчиками движения и фотореле. Второй шкаф устанавливается внутри дома. С него будет осуществляться дистанционный контроль (с помощью пульта).

    Оптимальной будет следующая система: первый шкаф устанавливают у ворот, и подключают на его контроллер фонари с датчиками движения с фотореле, стоящие вдоль дорожки. Второй шкаф ставится непосредственно внутри помещения — отсюда будет вестись дистанционное управление. Схема простая: к каналу, который идет в блок контроля, подключены определенные светильники, а с пульта подается сигнал. Щит позволяет передавать команды для автоматического отключения тока по периметру участка.

    Системы управления

    Светильники с газоразрядными лампочками управляются традиционным образом. Для этого применяются балласт и балластное сопротивление. Технология основана на установлении предела мощности светотехнического оборудования. Ограничение — номинал.

    Магнитный или индукционный балласт

    Магнитные балласты (индукционные) работают по следующему принципу: ток выступает в качестве разжигающего элемента для газоразрядной лампочки. Индукционный балласт необходим для ограничения мощности источника света за счет сопротивления индуктивности.

    Минус магнитных балластов: смещение фазы между напряжением и электрическим током, из-за чего меняется световой поток.

    Для запуска реакции иногда используется так называемое импульсное зажигающее устройство. На картинке внизу показана схема с использованием ИЗУ.

    Электронный балласт

    Низкочастотные или высокочастотные электронные балласты квалифицируются как традиционный тип управления. В них отсутствует стартер. Благодаря электронному балласту улучшается эффективность светильника, так как уменьшается вес прибора и снижается расход электричества. Такие устройства отличаются низкой шумностью. Минус электронных балластов — искаженность гармоник, что ухудшает качество радиоволн. На рисунке внизу показана схема подключения электромагнитного ПРА.

    За счет использования электронных балластов удается достичь качественного розжига лампочки и поддержания заданного уровня напряжения. Устройство обычно оснащается средствами дистанционного управления.

    Недостаток электронных балластов в том, что лампы и фотоэлементы подвержены загрязнению, из-за чего отзывчивость устройства снижается. Возможны сложности с калибровкой датчика.

    источник

    Добавить комментарий