Меню Рубрики

Выпрямительные установки для двигателей постоянного тока

ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ. ВЫПРЯМИТЕЛЬНЫЕ УСТАНОВКИ

ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ

Как уже было отмечено, наибольшее применение на электроподвижном составе нашли тяговые двигатели постоянного тока. Для преобразования переменного тока в постоянный (точнее, пульсирующий ) на электровозах переменного тока устанавливают выпрямители . В выпрямителях используют полупроводниковые приборы. Принцип действия этих приборов основан на их свойстве пропускать ток только в одном направлении.
Для изготовления полупроводниковых вентилей используют германий, кремний, селен и другие материалы. Пластины, изготовленные из этих материалов, после внесения специальных примесей имеют слоистую структуру, в которой чередуются проводимости различных типов — электронная (n) и дырочная (р).
В неуправляемых выпрямителях используют неуправляемые вентили — диоды , которые начинают проводить ток, как только к ним прикладывают напряжение, действующее в проводящем направлении. Диоды имеют двухслойную р-n-p-структуру, для них характерна высокая проводимость в прямом направлении и низкая в обратном.
В преобразователях, предназначенных не только для выпрямления, но и для регулирования выпрямленного напряжения и инвертирования (т. е. преобразования постоянного напряжения в переменное) используют полупроводниковые управляемые вентили — тиристоры.
Полупроводниковые приборы подразделяют на различные типы по исходному материалу, назначению, конструкции, мощности, виду охлаждения, диапазону рабочих частот и т. д. В силовых цепях электроподвижного состава используют мощные (силовые) кремниевые полупроводниковые приборы с принудительным воздушным охлаждением.
Силовые диоды способны выдерживать высокое (до 4000 В) обратное (прикладываемое в непроводящем направлении) напряжение при незначительных токах утечки (до 5 мА).

Рис. 59 Общий вид диода штыревой конструкции (а)
и его вольт-амперная характеристика (б)

У силового диода (рис. 59, а) наружный конец гибкого вывода является одним из электродов вентиля, на него насажен стандартный наконечник для включения прибора в схему. Положительный электрод называется анодом , а отрицательный — катодом. Направление тока в вентиле (от верхнего гибкого вывода к основанию или, наоборот, от основания к выводу) указывают значком на корпусе вентиля. Охладители имеют массивное основание и ребра, увеличивающие поверхность охлаждения.
Основной для полупроводниковых вентилей является вольт-амперная характеристика (ВАХ), показывающая зависимость тока, проходящего через прибор в прямом Iпр и обратном Iобр направлении от соответствующего напряжения (рис. 59, б).
При прохождении прямого тока через вентиль в нем вследствие внутреннего электрического сопротивления происходит падение напряжения (прямое падение напряжения) и возникают потери энергии, которые выделяются в виде тепла. Поэтому ток Iпр, проходящий через диод в прямом (проводящем) направлении, ограничивается допустимой температурой нагрева полупроводниковой структуры и условиями охлаждения. Современные силовые диоды с воздушным охлаждением рассчитаны на предельные прямые токи до 1600 А.
При включении диода в непроводящем направлении ток Iобр с увеличением обратного напряжения Uобр возрастает медленно. Затем при достижении предельного напряжения Umax наступает пробой вентиля, т. е. он теряет свои запирающие свойства. Поэтому напряжение, подводимое к вентилю, должно быть меньше значения Umax, при котором происходит пробой.
Вентили рассчитывают на определенное обратное номинальное напряжение (повторяющееся напряжение), при котором завод-изготовитель гарантирует их длительную работу без пробоя.
В зависимости от номинального напряжения Uном вентили подразделяют на классы. Величина Uном/100 означает класс вентиля. Например, кремниевый вентиль 8-го класса имеет повторяющееся напряжение
8 * 100 = 800 В. Вполне понятно, что чем выше класс вентиля, тем больше его стоимость. На электровозах устанавливают вентили не ниже 8-го класса.
Для того чтобы напряжение, приложенное к вентилю, не могло превысить предельного значения, вентили выбирают с соответствующим запасом.
Устанавливаемые на современных отечественных электровозах полупроводниковые вентили могут кратковременно пропускать в прямом направлении ток более 1000 А, не повреждаясь при этом, но не выдерживают обратного тока даже 1 А. Это объясняется тем, что прямой ток, как и выделяемое при прохождении его тепло, распределяется равномерно по всей площади структуры полупроводника. Обратный же ток проходит не по всей поверхности, а по отдельным небольшим каналам. Поэтому в отдельных точках выделяется значительное количество тепла, что способствует пробою вентиля.
Учитывая это, кремниевые пластины вентилей стали изготовлять по особой технологии. Это позволило обеспечить прохождение обратного тока равномерно по всей поверхности пластины, что снизило вероятность его недопустимого нагрева и пробоя. Такие вентили получили название лавинных. Их широко применяют на электровозах.
Силовые тиристоры, широко применяемые на электроподвижном составе, способны находиться в закрытом состоянии в случае приложения к ним как прямого, так и обратного напряжения, если на вентиль не подается сигнал управления, и пропускать ток при весьма малом падении напряжения в прямом направлении, если прибор открыт управляющим сигналом.
После того как тиристор откроется, он продолжает работать независимо от того, поступает или нет сигнал на его управляющий вывод. Закрыть его можно только уменьшив прямой ток практически до нуля. Тиристоры имеют более сложную, четырехслойную р-n-р-n-структуру, обеспечивающую эти свойства.
Управляемые вентили (штыревые и др.) конструктивно сходны с неуправляемыми (см. рис. 59, а). Отличие их состоит в том, что они, кроме силового (гибкого), имеют еще дополнительный вывод в корпусе от управляющего электрода, В мощных тиристорах толщина кремниевой пластинки, находящейся внутри корпуса полупроводникового прибора, не превышает 0,35 мм. Диаметр ее зависит от пропускаемого тока.
Широкое распространение получили тиристоры (рис. 60, а) и диоды таблеточного типа, так как у них по сравнению со штыревыми существенно увеличена поверхность охлаждения, улучшен теплоотвод и выше стойкость к перегрузкам.

Читайте также:  Установка двигателя шкоду фелиция

Рис.60 Общий вид тиристора таблеточной конструкции

Таблеточные тиристоры и диоды зажимают контактными поверхностями, представляющими собой анодный и ка-
тодный электроды прибора, между двумя половинками охладителей, которые изолированы друг от друга.
Напряжение включения можно значительно снизить, если на управляющий электрод подать импульс тока. Очевидно, что тиристоры должны выдерживать в закрытом состоянии не только обратное напряжение, но и прямое. Переход тиристора в открытое состояние должен происходить только при наличии импульса тока в цепи управления.
Для тиристоров, как и для диодов, основными параметрами являются: предельный прямой ток, обратное повторяющееся напряжение, прямое падение напряжения, обратный ток утечки. Кроме того, существует ряд дополнительных параметров: прямое повторяющееся напряжение, ток управления, напряжение управления, время включения и выключения, а также ряд других пара­метров.
Обозначения тиристоров и диодов расшифровываются следующим образом. Например, в марке ДЛ123-320-20 буквы и цифры означают: Д — диод; Л — лавинный; 123 — группа цифр, характеризующих модификацию прибора, условный диаметр и конструктивное исполнение корпуса; 320 — предельный ток, А; 20 — класс вентиля. В марке Т253-1250-16 буква «Т» означает тиристор, а цифры расшифровываются так же, как в обозначении диода.

ПРЕОБРАЗОВАТЕЛЬНЫЕ УСТАНОВКИ ДЛЯ РЕЖИМА ТЯГИ

Неуправляемые выпрямители широко применяют на электровозах переменного тока для питания тяговых двигателей в режиме тяги. Они преобразуют переменный ток в постоянный (пульсирующий). Выпрямители могут быть соединены с обмоткой трансформатора различными способами и вследствие этого имеют различную структуру. Самое простое включение показано на рис. 61, где выпрямитель состоит из одного диода.

Рис. 61. Схема однополупериодного выпрямления (а)
и кривая выпрямленного напряжения (б)

Электродвижущая сила во вторичной обмотке трансформатора, как и в первичной, изменяется по синусоиде. Когда э. д. с, а следовательно, и напряжение U, приложенное к выпрямителю, во вторичной обмотке действуют слева направо (на рис. 61, а направление показано сплошной стрелкой), потенциал анода диода VD выше, чем катода, и через двигатель проходит ток. При изменении направления э. д. с. на противоположное выпрямитель не пропускает тока. Таким образом, по цепи нагрузки проходит не постоянный, а пульсирующий ток: он постоянен только по направлению (рис. 61, б). Рассмотренная схема однополупериодного выпрямления на электровозе не используется. Для того чтобы через выпрямитель проходил ток в оба полупериода, применяют схему двухполупериодного выпрямления либо с нулевым выводом вторичной обмотки трансформатора, либо мостовую.

Рис.62. Схемы двухполупериодного выпрямления (а и б)
и кривая выпрмленного напряжения (в)

В схеме с нулевым выводом вторичную обмотку трансформатора делят на две равные части, выпрямитель и двигатель включают, как показано на рис. 62, а. Когда э. д. с, а следовательно, и напряжение в первый полупериод направлены слева направо (сплошная стрелка на рис. 62, а), проводит ток (открыт) диод VD2, а диод VD1 закрыт. К нему приложено напряжение, действующее в непроводящем направлении. При изменении направления э. д. с. трансформатора на противоположное ток проводит вентиль VD1. Таким образом, в течение обоих полупериодов через двигатель проходит ток, изменяющийся от нуля до амплитудного значения и вновь до нуля.
Недостаток такой схемы выпрямления заключается в том, что в каждый полупериод работает только половина
обмотки трансформатора, а это приводит к плохому использованию, а значит, и большему расходу меди.
Выпрямительная установка, собранная по мостовой схеме, состоит из четырех плеч (рис. 62, б). Когда напряжение во вторичной обмотке трансформатора действует слева направо, ток проходит через диод VD1, нагрузку (двигатель), диод VD3 в обмотку трансформатора (сплошные стрелки). При изменении направления напряжения (штриховые стрелки) ток проходит через диод VD2, нагрузку, диод VD4 и возвращается в обмотку трансформатора. Следовательно, как и в предыдущей схеме, ток в каждый полупериод проодит через нагрузку в одном направ­лении (рис. 62, в).
В мостовой схеме вторичная обмотка тягового трансформатора работает полностью. На первый взгляд кажется, что число вентилей в этой схеме удваивается. Однако напряжение, приходящееся на каждый диод, уменьшается в 2 раза. Поскольку каждое плечо моста VD1—VD4 имеет несколько последовательно включенных вентилей и несколько параллельных ветвей, то общее число диодов, необходимое для выпрямителя, питающего тяговые двигатели и собранного по мостовой схеме (см. рис. 62, б), равно числу диодов в схеме рис. 62, а. Так, один выпрямитель электровоза ВЛ80т(с) имеет в каждом плече моста 12 параллельных ветвей (рис. 63), каждая из которых содержит четыре последовательно включенных лавинных вентиля.

Читайте также:  Установка подушек двигателя газ 53

Рис. 63. Схема плеча выпрямительной установки восьмиосного электровоза

Следовательно, в одном выпрямителе имеется 4-4-12= 192 вентиля. Выпрямитель рассчитан на номинальные выпрямленные ток 3200 А и напряжение 1350 В. Он питает два тяговых двигателя. Поэтому на восьмиосных электровозах установлено четыре таких выпрямителя; общее число вентилей в них равно 708. Коэффициент полезного действия выпрямителя 99%. Выпрямитель размещен в двух шкафах и работает только с принудительным охлаждением. Каждый выпрямитель снабжается довольно сложной защитой.
Управляемые выпрямители, собранные на тиристорах, позволили осуществить не только преобразование переменного тока в постоянный, но и плавное регулирование напряжения, подводимого к тяговым двигателям электровозов переменного тока, вместо ступенчатого.
Как же осуществляется плавное регулирование? В выпрямителе, собранном на тиристорах VS по схеме моста (рис. 64, а), можно изменять угол а их включения, т. е. подавать в соответствующие моменты управляющие импульсы тока Iу (см. рис. 60).

Рис. 64. Принципиальная схема плавного регулирования напряжения,
подводимого к тяговым двигателям (а), и кривые напряжения при глубоком регулировании

При этом можно регулировать среднее значение напряжения Ucp от нуля при а = 180° до максимального возможного при а = 0° (рис. 64, б). Последнее соответствует среднему выпрямленному напряжению в неуправляемых выпрямителях (см. рис. 62, в).
Как видно из рис. 64, при таком регулировании, называемом глубоким, возникают большие пульсации напряжения и выпрямленного тока. Это значительно осложняет работу тяговых двигателей. Для устранения таких пульсаций на электровозе ВЛ80р осуществляется более плавное регулирование напряжения. Здесь тяговый трансформатор имеет три секции вторичной обмотки с напряжениями Um/4, Um/4 и Um/2. Выпрямитель выполнен по мост­вой схеме (рис. 65, а), имеет восемь плеч.

Рис.65. Упрощенная силовая схема электровоза ВЛ80р (а)
и кривые напряжения при зонном регулировании
в пределах секции вторичной обмотки трансформатора (б)

Предусмотрено четыре зоны регулирования выпрямленного напряжения, в каждой из которых осуществляется плавное регулирование в пределах четверти амплитуды полного напряжения. Переключение с одной секции на другую тиристоры позволяют осуществлять без тока и необходимость в контакторах с дугогашением отпадает.
Напряжения, возникающие в процессе его плавного изменения в пределах регулируемой секции, складываются с напряжением, индуцируемым в секциях, где уже был завершен этот процесс (рис. 65, б). Поэтому здесь только в первой секции вторичной обмотки (когда на двигатели подается небольшое напряжение) осуществляется глубокое регулирование.

источник

Назначение и устройство выпрямительной установки ВУК-4000Т-02

Преобразовательные установки предназначаются для преобразования электрического тока из переменного в постоянный (выпрямители), из постоянного в переменный (инверторы), из переменного одной частоты в переменный другой частоты (преобразователи частоты). Процесс преобразования может происходить одновременно с регулированием напряжения. На электровозах переменного тока нашли широкое применение выпрямители, а в последнее время благодаря широкому распространению управляемых полупроводниковых вентилей применяются управляемые выпрямители, т. е. выпрямители с регулированием напряжения и инверторы (электровоз ВЛ80р), также с регулированием режима рекуперативного торможения.
Необходимость в преобразователях на электроподвижном составе переменного тока обусловлена, прежде всего, применением тяговых двигателей постоянного тока, в то время как в контактной сети переменное напряжение 25 кВ частотой 50 Гц. Поэтому на электровозах устанавливают оборудование, которое в тяговом режиме снижает это напряжение до уровня, допустимого для тяговых двигателей, преобразует переменный ток в постоянный и регулирует напряжение. Понижение напряжения осуществляется трансформатором и автотрансформатором, преобразование переменного тока в постоянный — выпрямителем. Регулирование напряжения может выполняться различными способами. При наличии в выпрямителях управляемых вентилей регулирование напряжения может осуществляться выпрямителями.
Выпрямительные установки с неуправляемыми вентилями установлены на всех электровозах переменного тока, кроме ВЛ80р. Выпрямительные установки, в которых применены управляемые вентили — тиристоры, используются на электровозах ВЛ80т и ЧС4Т для регулирования режима реостатного торможения путем изменения тока возбуждения тяговых двигателей в зависимости от необходимой силы торможения, скорости и других факторов.
На электровозе ВЛ80р выпрямительно-инверторные преобразователи выполнены на управляемых вентилях. Они в режиме тяги выполняют роль управляемых выпрямителей, а в режиме рекуперативного торможения — управляемых инверторов.
Основным элементом всех преобразователей является вентиль. При прохождении через вентиль тока часть энергии теряется — выделяется в виде тепла. Современные преобразовательные установки работают сравнительно с небольшими потерями энергии — не более 2%. Однако если не предусмотреть принудительного охлаждения — вентиляции, то эти потери могут привести к недопустимому нагреву оборудования, в первую очередь самих вентилей. Поэтому вентили монтируют в специальных охладителях — радиаторах с развитой поверхностью в виде ребер, а преобразователи оборудуют системой принудительного охлаждения потоком воздуха.
Для преобразователей большой мощности требуются десятки, а иногда сотни вентилей. Ток и напряжение должны равномерно распределяться между всеми вентилями. Поэтому в преобразователях используют устройства, выравнивающие ток и напряжение между вентилями. Наконец, преобразователи с управляемыми вентилями оборудуют системой, обеспечивающей подачу открывающих импульсов на управляющие электроды тиристоров, системами защиты и сигнализации: Все перечисленные устройства в комплексе составляют преобразовательную установку.

Читайте также:  Установка датчика температуры двигателя на снегоход

Краткая характеристика выпрямительной установки ВУК-4000Т-02

Назначение. Выпрямительная установка ВУК-4000Т-02 предназначена для выпрямления переменного тока в постоянный для питания тяговых двигателей.
Конструкция. Конструктивно каждая выпрямительная установка выполнена в виде двух блоков — шкафов прямо­угольной формы, основу которых составляет сварной металлический каркас 1 (рис. 1). Поскольку каждый вентиль 3 с радиатором 4 должен быть изолирован от соседних вентилей, радиаторы укреплены на изоляционных шпильках 6 и между ними проложены изоляционные прокладки. Шины 2, которыми выпрямительные установки подсоединены к цепям трансформатора и двигателей, установлены на изоляторах 5. Вентили одного плеча расположены с одной стороны, а вентили другого плеча — с другой. В каждую из 12 параллельных ветвей плеча входят четыре вентиля, расположенных друг под другом. Радиаторы охлаждаются потоком воздуха, направленного от вентилятора через переключающее устройство сверху вниз. Корпуса вентилей со стороны гибкого вывода охлаждаются благодаря естественной циркуляции воздуха. На каждой секции электровоза установлены четыре блока выпрямительных установок ВУК-4000Т-02.

Рисунок 1 – Общий вид выпрямительной установки ВУК-4000Т-02

Рисунок 2 – Фото выпрямительной установки

В каждом блоке размещено по шесть диодов с охладителями. Установка укомплектована диодами ВЛ200-8 не ниже 8-го класса. Для удобства замены диодов в эксплуатации они по значению прямого падения напряжения разбиты на две подгруппы, каждая из которых имеет следующую маркировку:

  • подгруппа I (0,52; .0,53; 0,54 В) — цвет черный;
  • подгруппа II (0,55; 0,56; 0,57; 0,58 В) — цвет белый.

Одна выпрямительная установка содержит 192 диода.
Плечо моста содержит 4 последовательно и 12 параллельно соединенных диодов (рис.3).

Рисунок 3 – Схема соединений

Цифра 200 в обозначении диода указывает значение номинального прямого тока диода (200 А); класс диода характеризует значение обратного напряже­ния или напряжение лавинообразования; 8-й класс — не менее 869В.
Основой кремниевого выпрямительного диода (рис. 4) служит тонкая круглая пластинка из сверхчистого монокристаллического кремния, обладающего электронной проводимостью. В качестве электродов выпрямительного элемента в кремниевых диодах использованы никелированные вольфрамовые диски, припаиваемые с двух сторон к кремниевой пластинке и защищающие ее от механических повреждений. Для повышения надежности работы диода в обратном направлении боковую поверхность кремниевой пластинки стачивают на конус.

Рисунок 4 — Конструкция кремниевого диода

Выпрямительный элемент 2 припаян к массивному медному основанию 1, представляющему собой короткий болт с шестигранной головкой, на торце которой имеется цилиндрическое углубление для выпрямительного элемента. Нарезка на стержне болта служит для ввинчивания в тело охладителя 8, способствующего лучшему отводу тепла от диода. Сверху в основание завальцован стальной цилиндрический кожух 4, защищающий выпрямительный элемент от воздействия окружающей среды. К верхнему электроду элемента припаян гибкий провод 3, выходящий наружу сквозь изолирующую втулку 5 из свинцового стекла, укрепленную в верхней части кожуха. Наружный конец гибкого провода верхнего вывода 6, являющегося одним из электродов диода, снабжен стандартным наконеч­ником 7 для включения диода в цепь.

Фрагмент работы с оформлением в формате PDF можно посмотреть ЗДЕСЬ

В комплект входит чертеж выпрямительной установки ВУК4000Т-02 на формате А1 в программе «Компас» (формат CDW)

источник